Direct image functorIn mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf F defined on a topological space X and a continuous map f: X → Y, we can define a new sheaf f∗F on Y, called the direct image sheaf or the pushforward sheaf of F along f, such that the global sections of f∗F is given by the global sections of F.
Real projective spaceIn mathematics, real projective space, denoted \mathbb{RP}^n or \mathbb{P}_n(\R), is the topological space of lines passing through the origin 0 in the real space \R^{n+1}. It is a compact, smooth manifold of dimension n, and is a special case \mathbf{Gr}(1, \R^{n+1}) of a Grassmannian space. As with all projective spaces, RPn is formed by taking the quotient of Rn+1 ∖ under the equivalence relation x ∼ λx for all real numbers λ ≠ 0. For all x in Rn+1 ∖ one can always find a λ such that λx has norm 1.
Traité de la lumière (Huygens)Dans son Traité de la lumière, écrit à Paris en 1678 mais publié douze ans plus tard lorsqu'il réside aux Pays-Bas, Christian Huygens expose ses conceptions sur la nature de la lumière qui permettent d'expliquer les lois de l'optique géométrique établies par René Descartes. À la différence d'Isaac Newton qui pensait que la lumière était composée de particules émises par la source lumineuse qui venaient frapper l'œil de l'observateur, Huygens conçoit la lumière comme formée d'ondes sphériques qui se propagent dans l'espace à la manière des ondes sonores.
Hyperbolic spaceIn mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane.
Intensity (physics)In physics, the intensity or flux of radiant energy is the power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the energy. In the SI system, it has units watts per square metre (W/m2), or kg⋅s−3 in base units. Intensity is used most frequently with waves such as acoustic waves (sound) or electromagnetic waves such as light or radio waves, in which case the average power transfer over one period of the wave is used.
Direct image with compact supportIn mathematics, the direct image with compact (or proper) support is an for sheaves that extends the compactly supported global sections functor to the relative setting. It is one of Grothendieck's six operations. Let f: X → Y be a continuous mapping of locally compact Hausdorff topological spaces, and let Sh(–) denote the of sheaves of abelian groups on a topological space. The direct image with compact (or proper) support is the functor f!: Sh(X) → Sh(Y) that sends a sheaf F on X to the sheaf f!(F) given by the formula f!(F)(U) := {s ∈ F(f −1(U)) | f|supp(s): supp(s) → U is proper} for every open subset U of Y.
Éther (physique)En physique, le terme d'éther a recouvert plusieurs notions différentes selon les époques. Les différents éthers considérés par les physiciens sont « des substances subtiles distinctes de la matière et permettant de fournir ou transmettre des effets entre les corps ».