In mathematics, real projective space, denoted \mathbb{RP}^n or \mathbb{P}_n(\R), is the topological space of lines passing through the origin 0 in the real space \R^{n+1}. It is a compact, smooth manifold of dimension n, and is a special case \mathbf{Gr}(1, \R^{n+1}) of a Grassmannian space.
As with all projective spaces, RPn is formed by taking the quotient of Rn+1 ∖ under the equivalence relation x ∼ λx for all real numbers λ ≠ 0. For all x in Rn+1 ∖ one can always find a λ such that λx has norm 1. There are precisely two such λ differing by sign.
Thus RPn can also be formed by identifying antipodal points of the unit n-sphere, Sn, in Rn+1.
One can further restrict to the upper hemisphere of Sn and merely identify antipodal points on the bounding equator. This shows that RPn is also equivalent to the closed n-dimensional disk, Dn, with antipodal points on the boundary, ∂Dn = Sn−1, identified.
RP1 is called the real projective line, which is topologically equivalent to a circle.
RP2 is called the real projective plane. This space cannot be embedded in R3. It can however be embedded in R4 and can be immersed in R3 (see here). The questions of embeddability and immersibility for projective n-space have been well-studied.
RP3 is (diffeomorphic to) SO(3), hence admits a group structure; the covering map S3 → RP3 is a map of groups Spin(3) → SO(3), where Spin(3) is a Lie group that is the universal cover of SO(3).
The antipodal map on the n-sphere (the map sending x to −x) generates a Z2 group action on Sn. As mentioned above, the orbit space for this action is RPn. This action is actually a covering space action giving Sn as a double cover of RPn. Since Sn is simply connected for n ≥ 2, it also serves as the universal cover in these cases. It follows that the fundamental group of RPn is Z2 when n > 1. (When n = 1 the fundamental group is Z due to the homeomorphism with S1). A generator for the fundamental group is the closed curve obtained by projecting any curve connecting antipodal points in Sn down to RPn.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
Ce cours de deux semestres donne une introduction à la Physique du solide, à la structure cristalline, aux vibrations du réseau, aux propriétés électroniques, de transport thermique et électrique ains
En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
En mathématiques, une variété de drapeaux généralisée ou tordue est un espace homogène d'un groupe (algébrique ou de Lie) qui généralise les espaces projectifs, les grassmanniennes, les quadriques projectives et l'espace de tous les drapeaux de signature donnée d'un espace vectoriel. La plupart des espaces homogènes de points ou de figures de la géométrie classique sont des variétés de drapeaux généralisées ou des espaces symétriques ou des variétés symétriques (analogues en géométrie algébrique des espaces symétriques), ou leur sont liés.
In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a complex projective space label the complex lines through the origin of a complex Euclidean space (see below for an intuitive account). Formally, a complex projective space is the space of complex lines through the origin of an (n+1)-dimensional complex vector space.
We construct a modular desingularisation of (M) over bar (2,n)(P-r, d)(main). The geometry of Gorenstein singularities of genus two leads us to consider maps from prestable admissible covers; with this enhanced logarithmic structure, it is possible to desi ...
We develop a very general version of the hyperbola method which extends the known method by Blomer and Brudern for products of projective spaces to complete smooth split toric varieties. We use it to count Campana points of bounded log-anticanonical height ...
Palaiseau2024
There is a growing recognition that electronic band structure is a local property of materials and devices, and there is steep growth in capabilities to collect the relevant data. New photon sources, from small-laboratory-based lasers to free electron lase ...