Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Signed graphIn the area of graph theory in mathematics, a signed graph is a graph in which each edge has a positive or negative sign. A signed graph is balanced if the product of edge signs around every cycle is positive. The name "signed graph" and the notion of balance appeared first in a mathematical paper of Frank Harary in 1953. Dénes Kőnig had already studied equivalent notions in 1936 under a different terminology but without recognizing the relevance of the sign group.
Habileté (technique)L’habileté désigne une capacité, une aptitude acquise à réaliser un acte, une tâche ou un travail particulier. Du même trait elle désigne la qualité d’une personne habile à réaliser cette action. Par analogie, elle peut être comparée à la virtuosité du musicien. En quelque sorte, la virtuosité est une habileté particulière dont le sens figuré prend la forme d'une habileté supérieure, dans un art ou un métier, par exemple. La notion d’habileté est fortement liée à celle de transmission du savoir-faire.
Eigenvector centralityIn graph theory, eigenvector centrality (also called eigencentrality or prestige score) is a measure of the influence of a node in a network. Relative scores are assigned to all nodes in the network based on the concept that connections to high-scoring nodes contribute more to the score of the node in question than equal connections to low-scoring nodes. A high eigenvector score means that a node is connected to many nodes who themselves have high scores. Google's PageRank and the Katz centrality are variants of the eigenvector centrality.
Réseau invariant d'échelleUn réseau invariant d'échelle (ou réseau sans échelle, ou encore scale-free network en anglais) est un réseau dont les degrés suivent une loi de puissance. Plus explicitement, dans un tel réseau, la proportion de nœuds de degré k est proportionnelle à pour grand, où est un paramètre (situé entre 2 et 3 pour la plupart des applications). Beaucoup de réseaux, comme le réseau du web, les réseaux sociaux et les réseaux biologiques semblent se comporter comme des réseaux invariants d'échelle, d'où l'importance de ce modèle.
Soft skillsSoft skills, also known as power skills, common skills, essential skills, or core skills, are skills applicable to all professions. These include critical thinking, problem solving, public speaking, professional writing, teamwork, digital literacy, leadership, professional attitude, work ethic, career management and intercultural fluency. This is in contrast to hard skills, which are specific to individual professions. The word "skill" highlights the practical function.
Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
Réseau complexeEn théorie des graphes, un réseau complexe est un réseau possédant une architecture et une topologie complexe et irrégulière. Comme tous les réseaux, ils sont composés de nœuds (ou sommets ou points) représentant des objets, interconnectés par des liens (ou arêtes ou lignes). Ces réseaux sont des représentations abstraites des relations principalement présentes dans la vie réelle dans une grande diversité de systèmes biologiques et technologiques.
Climate as complex networksThe field of complex networks has emerged as an important area of science to generate novel insights into nature of complex systems The application of network theory to climate science is a young and emerging field. To identify and analyze patterns in global climate, scientists model climate data as complex networks. Unlike most real-world networks where nodes and edges are well defined, in climate networks, nodes are identified as the sites in a spatial grid of the underlying global climate data set, which can be represented at various resolutions.
Morphisme de graphesUn morphisme de graphes ou homomorphisme de graphes est une application entre deux graphes (orientés ou non orientés) qui respecte la structure de ces graphes. Autrement dit l'image d'un graphe dans un graphe doit respecter les relations d'adjacence présentes dans . thumb|alt=Un homomorphisme entre deux graphes|Le graphe de gauche se projette dans le graphe de droite, par exemple de cette façon là Si et sont deux graphes dont on note les sommets V(G) et V(H) et les arêtes E(G) et E(H), une application qui envoie les sommets de G sur ceux de H est un morphisme de graphes si : , .