Modulation par impulsions et codageLa modulation par impulsions et codage ou MIC (en anglais : pulse-code modulation), généralement abrégé en PCM est une représentation numérique d'un signal électrique résultant d'un processus de numérisation. Le signal est d'abord échantillonné, puis chaque échantillon est quantifié indépendamment des autres échantillons, et chacune des valeurs quantifiées est convertie en un code numérique. Le traitement indépendant de chaque échantillon implique qu'il n'y a ni chiffrement, ni compression de données.
Traitement numérique du signalLe traitement numérique du signal étudie les techniques de traitement (filtrage, compression, etc), d'analyse et d'interprétation des signaux numérisés. À la différence du traitement des signaux analogiques qui est réalisé par des dispositifs en électronique analogique, le traitement des signaux numériques est réalisé par des machines numériques (des ordinateurs ou des circuits dédiés). Ces machines numériques donnent accès à des algorithmes puissants, tel le calcul de la transformée de Fourier.
Algorithme de Strassenvignette|Algorithme de Strassen où sont représentés les matrices Ci,j ainsi que les 7 nouvelles matrices Mi En mathématiques, plus précisément en algèbre linéaire, l’algorithme de Strassen est un algorithme calculant le produit de deux matrices carrées de taille n, proposé par Volker Strassen en 1969. La complexité de l'algorithme est en , avec pour la première fois un exposant inférieur à celui de la multiplication naïve qui est en . Par contre, il a l'inconvénient de ne pas être stable numériquement.
Direct-sequence spread spectrumL'étalement de spectre à séquence directe (DSSS : direct-sequence spread spectrum) est une technique d'étalement de spectre utilisée dans les communications par satellite, les réseaux sans fil et plus précisément la version du Wi-Fi définie par la norme IEEE 802.11b. Le but du DSSS est, d'une part, de rendre les signaux occupant une bande de fréquence, comme un signal de parole, plus résistants aux brouillages et aux interférences rencontrés lors de la transmission ; d'autre part de permettre à plusieurs équipements de partager la même fréquence porteuse (accès multiple par répartition par code).
Signal électriquevignette|Signaux électriques sur l'écran d'un oscilloscope : signal rectanglaire (haut), signal harmonique ou sinusoïdal (bas). Un signal électrique est une grandeur électrique dont la variation dans le temps transporte une information, d'une source à une destination. La grandeur électrique que l'on considère pour la transmission et le traitement du signal peut être directement la différence de potentiel ou l'intensité d'un courant électrique ; ou bien une modulation de l'amplitude, de la fréquence ou de la phase d'une variation périodique de ces grandeurs, qu'on appelle porteuse ; dans les communications numériques par modem des règles complexes régissent la modulation afin d'occuper au mieux la largeur de bande allouée.
Transformation de Fourier rapideLa transformation de Fourier rapide (sigle anglais : FFT ou fast Fourier transform) est un algorithme de calcul de la transformation de Fourier discrète (TFD). Sa complexité varie en O(n log n) avec le nombre n de points, alors que la complexité de l’algorithme « naïf » s'exprime en O(n). Ainsi, pour n = , le temps de calcul de l'algorithme rapide peut être 100 fois plus court que le calcul utilisant la formule de définition de la TFD.
Traitement du signalLe traitement du signal est la discipline qui développe et étudie les techniques de traitement, d'analyse et d' des . Parmi les types d'opérations possibles sur ces signaux, on peut dénoter le contrôle, le filtrage, la compression et la transmission de données, la réduction du bruit, la déconvolution, la prédiction, l'identification, la classification Bien que cette discipline trouve son origine dans les sciences de l'ingénieur (particulièrement l'électronique et l'automatique), elle fait aujourd'hui largement appel à de nombreux domaines des mathématiques, comme la , les processus stochastiques, les espaces vectoriels et l'algèbre linéaire et des mathématiques appliquées, notamment la théorie de l'information, l'optimisation ou encore l'analyse numérique.
Matrice par blocsvignette|Un matrice présente une structure par blocs si l'on peut isoler les termes non nuls dans des sous-matrices (ici la structure « diagonale par blocs » d'une réduite de Jordan). On appelle matrice par blocs une matrice divisée en blocs à partir d'un groupement quelconque de termes contigus de sa diagonale. Chaque bloc étant indexé comme on indicerait les éléments d'une matrice, la somme et le produit de deux matrices partitionnées suivant les mêmes tailles de bloc, s'obtiennent avec les mêmes règles formelles que celles des composantes (mais en veillant à l'ordre des facteurs dans les produits matriciels!).
Sparse approximationSparse approximation (also known as sparse representation) theory deals with sparse solutions for systems of linear equations. Techniques for finding these solutions and exploiting them in applications have found wide use in , signal processing, machine learning, medical imaging, and more. Consider a linear system of equations , where is an underdetermined matrix and . The matrix (typically assumed to be full-rank) is referred to as the dictionary, and is a signal of interest.
Interféromètre astronomiqueUn interféromètre astronomique est un réseau de télescopes ou segments de miroirs qui agissent ensemble aux fins de détection avec une résolution plus grande, via l'interférométrie. L'avantage d'un interféromètre est que son pouvoir de résolution est le même que celui d'un télescope avec la même ouverture que s'il englobait tous les sous-composants de l'interféromètre. Le désavantage principal est qu'il ne collecte pas autant de photons, donc ce type d'instruments est surtout utile pour des objets plus lumineux, tels des étoiles binaires.