Expression facialeL'expression faciale est un aspect important du comportement et de la communication non verbale. Déjà étudiée par Darwin et Duchenne de Boulogne au , l'expression faciale a joué un rôle majeur dans la recherche sur les émotions depuis les travaux de dans les années 1960. Ses élèves Paul Ekman et ont défendu l'idée d'un nombre limité d'émotions de base auxquelles sont associées des expressions faciales automatiques, universelles et innées. L'expression faciale joue aussi un rôle important dans la langue des signes.
Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Analyse prédictiveL'analyse (ou logique) prédictive englobe une variété de techniques issues des statistiques, d'extraction de connaissances à partir de données et de la théorie des jeux qui analysent des faits présents et passés pour faire des hypothèses prédictives sur des événements futurs. Dans le monde des affaires, des modèles prédictifs exploitent des schémas découverts à l'intérieur des ensembles de données historiques et transactionnelles pour identifier les risques et les opportunités.
PrévisionLa prévision est une . D'une façon générale, . Dans un sens plus restrictif, en épistémologie contemporaine, la prévision se distingue de la prédiction, qui est issue d'une loi ou théorie scientifique hautement confirmée ou corroborée, tandis que la prévision découle d'hypothèses ou de conjectures moins assurées. La prévisibilité et la prédictibilité désignent la possibilité que certains événements ou phénomènes soient prévus ou prédits à partir d'une hypothèse ou d'une théorie scientifique et de conditions initiales appropriées.
Informatique affectiveL’informatique affective ou informatique émotionnelle (en anglais, affective computing) est l'étude et le développement de systèmes et d'appareils ayant les capacités de reconnaître, d’exprimer, de synthétiser et modéliser les émotions humaines. C'est un domaine de recherche interdisciplinaire couvrant les domaines de l'informatique, de la psychologie et des sciences cognitives qui consiste à étudier l’interaction entre technologie et sentiments.
Jeux d'entrainement, de validation et de testEn apprentissage automatique, une tâche courante est l'étude et la construction d'algorithmes qui peuvent apprendre et faire des prédictions sur les données. De tels algorithmes fonctionnent en faisant des prédictions ou des décisions basées sur les données, en construisant un modèle mathématique à partir des données d'entrée. Ces données d'entrée utilisées pour construire le modèle sont généralement divisées en plusieurs jeux de données .
Théorie de l'estimationEn statistique, la théorie de l'estimation s'intéresse à l'estimation de paramètres à partir de données empiriques mesurées ayant une composante aléatoire. Les paramètres décrivent un phénomène physique sous-jacent tel que sa valeur affecte la distribution des données mesurées. Un estimateur essaie d'approcher les paramètres inconnus à partir des mesures.
Validation croiséeLa validation croisée () est, en apprentissage automatique, une méthode d’estimation de fiabilité d’un modèle fondée sur une technique d’échantillonnage. Supposons posséder un modèle statistique avec un ou plusieurs paramètres inconnus, et un ensemble de données d'apprentissage sur lequel on peut apprendre (ou « entraîner ») le modèle. Le processus d'apprentissage optimise les paramètres du modèle afin que celui-ci corresponde le mieux possible aux données d'apprentissage.
Data PreprocessingData preprocessing can refer to manipulation or dropping of data before it is used in order to ensure or enhance performance, and is an important step in the data mining process. The phrase "garbage in, garbage out" is particularly applicable to data mining and machine learning projects. Data collection methods are often loosely controlled, resulting in out-of-range values, impossible data combinations, and missing values, amongst other issues. Analyzing data that has not been carefully screened for such problems can produce misleading results.
Formal specificationIn computer science, formal specifications are mathematically based techniques whose purpose are to help with the implementation of systems and software. They are used to describe a system, to analyze its behavior, and to aid in its design by verifying key properties of interest through rigorous and effective reasoning tools. These specifications are formal in the sense that they have a syntax, their semantics fall within one domain, and they are able to be used to infer useful information.