Purely functional data structureIn computer science, a purely functional data structure is a data structure that can be directly implemented in a purely functional language. The main difference between an arbitrary data structure and a purely functional one is that the latter is (strongly) immutable. This restriction ensures the data structure possesses the advantages of immutable objects: (full) persistency, quick copy of objects, and thread safety. Efficient purely functional data structures may require the use of lazy evaluation and memoization.
Structure de données persistanteEn informatique, une structure de données persistante est une structure de données qui préserve ses versions antérieures lorsqu'elle est modifiée ; une telle structure est immuable, car ses opérations ne la modifient pas en place (de manière visible) mais renvoient au contraire de nouvelles structures. Une structure est partiellement persistante si seule sa version la plus récente peut être modifiée, les autres n'étant accessibles qu'en lecture. La structure est dite totalement persistante si chacune de ses versions peut être lue ou modifiée.
Type abstraitEn informatique, un type de donnée abstrait (en anglais, abstract data type ou ADT) est une spécification mathématique d'un ensemble de données et de l'ensemble des opérations qu'on peut effectuer sur elles. On qualifie d'abstrait ce type de donnée car il ne spécifie pas comment les données sont représentées ni comment les opérations sont implémentées. Les types abstraits les plus utilisés sont : arbre binaire conteneur dictionnaire ou tableau associatif ensemble Graphe liste multiensemble pile Union-find Un type abstrait est composé de cinq champs : Type abstrait ; Utilise ; Opérations ; Pré-conditions ; Axiomes.
Arbre enracinéEn théorie des graphes, un arbre enraciné ou une arborescence est un graphe acyclique orienté possédant une unique racine, et tel que tous les nœuds sauf la racine ont un unique parent. En informatique, c'est également une structure de données récursive utilisée pour représenter ce type de graphes. Dans un arbre, on distingue deux catégories d'éléments : les feuilles (ou nœuds externes), éléments ne possédant pas de fils dans l'arbre ; les nœuds internes, éléments possédant des fils (sous-branches).
Constraint satisfactionIn artificial intelligence and operations research, constraint satisfaction is the process of finding a solution through a set of constraints that impose conditions that the variables must satisfy. A solution is therefore a set of values for the variables that satisfies all constraints—that is, a point in the feasible region. The techniques used in constraint satisfaction depend on the kind of constraints being considered.
Problème de satisfaction de contraintesLes problèmes de satisfaction de contraintes ou CSP (Constraint Satisfaction Problem) sont des problèmes mathématiques où l'on cherche des états ou des objets satisfaisant un certain nombre de contraintes ou de critères. Les CSP font l'objet de recherches intenses à la fois en intelligence artificielle et en recherche opérationnelle. De nombreux CSP nécessitent la combinaison d'heuristiques et de méthodes d'optimisation combinatoire pour être résolus en un temps raisonnable.
Structure de donnéesEn informatique, une structure de données est une manière d'organiser les données pour les traiter plus facilement. Une structure de données est une mise en œuvre concrète d'un type abstrait. Pour prendre un exemple de la vie quotidienne, on peut présenter des numéros de téléphone par département, par nom, par profession (comme les Pages jaunes), par numéro téléphonique (comme les annuaires destinés au télémarketing), par rue et/ou une combinaison quelconque de ces classements.
DécidabilitéEn logique mathématique, le terme décidabilité recouvre deux concepts liés : la décidabilité logique et la décidabilité algorithmique. L’indécidabilité est la négation de la décidabilité. Dans les deux cas, il s'agit de formaliser l'idée qu'on ne peut pas toujours conclure lorsque l'on se pose une question, même si celle-ci est sous forme logique. Une proposition (on dit aussi énoncé) est dite décidable dans une théorie axiomatique si on peut la démontrer ou démontrer sa négation dans le cadre de cette théorie.
Problème de décisionEn informatique théorique, un problème de décision est une question mathématique dont la réponse est soit « oui », soit « non ». Les logiciens s'y sont intéressés à cause de l'existence ou de la non-existence d'un algorithme répondant à la question posée. Les problèmes de décision interviennent dans deux domaines de la logique : la théorie de la calculabilité et la théorie de la complexité. Parmi les problèmes de décision citons par exemple le problème de l'arrêt, le problème de correspondance de Post ou le dernier théorème de Fermat.
Arborescencethumb|Exemple de représentation arborescente En mathématiques, plus précisément dans la théorie des graphes : une arborescence est un arbre comportant un sommet particulier , nommé racine de l'arborescence, à partir duquel il existe un chemin unique vers tous les autres sommets. En informatique, cette notion désigne souvent celle d'arbre de la théorie des graphes. Une arborescence désigne alors généralement une organisation des données en mémoire, de manière logique et hiérarchisée, utilisant une structure algorithmique d'arbre.