Spread Spectrum for Universal Compressive Sampling
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
State-of-the-art Artificial Intelligence (AI) algorithms, such as graph neural networks and recommendation systems, require floating-point computation of very large matrix multiplications over sparse data. Their execution in resource-constrained scenarios, ...
2023
We propose a distributed design method for decentralized control by exploiting the underlying sparsity properties of the problem. Our method is based on chordal decomposition of sparse block matrices and the alternating direction method of multipliers (ADM ...
This work is concerned with approximating matrix functions for banded matrices, hierarchically semiseparable matrices, and related structures. We develop a new divide-and-conquer method based on (rational) Krylov subspace methods for performing low-rank up ...
The Transfer Matrix formalism is ubiquitous when it comes to study wave propagation in various stratified media, applications ranging from Seismology to Quantum Mechanics. A relation between variables at two points in two different layers can be establishe ...
In this thesis we address the computation of a spectral decomposition for symmetric
banded matrices. In light of dealing with large-scale matrices, where classical dense
linear algebra routines are not applicable, it is essential to design alternative tech ...
An integer program (IP) is a problem of the form min{f(x):Ax=b,l≤x≤u,x∈Zn}, where A∈Zm×n, b∈Zm, l,u∈Zn, and f:Zn→Z is a separable convex objective function.
The problem o ...
Compressed sensing is provided a data-acquisition paradigm for sparse signals. Remarkably, it has been shown that the practical algorithms provide robust recovery from noisy linear measurements acquired at a near optimal sampling rate. In many real-world a ...
This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov ...
Machine learning frameworks based on correlations of interatomic positions begin with a discretized description of the density of other atoms in the neighborhood of each atom in the system. Symmetry considerations support the use of spherical harmonics to ...
Based on the spectral divide-and-conquer algorithm by Nakatsukasa and Higham [SIAM J. Sci. Comput., 35(3):A1325-A1349, 2013], we propose a new algorithm for computing all the eigenvalues and eigenvectors of a symmetric banded matrix with small bandwidth, w ...