Publication

A smooth basis for atomistic machine learning

Résumé

Machine learning frameworks based on correlations of interatomic positions begin with a discretized description of the density of other atoms in the neighborhood of each atom in the system. Symmetry considerations support the use of spherical harmonics to expand the angular dependence of this density, but there is, as of yet, no clear rationale to choose one radial basis over another. Here, we investigate the basis that results from the solution of the Laplacian eigenvalue problem within a sphere around the atom of interest. We show that this generates a basis of controllable smoothness within the sphere (in the same sense as plane waves provide a basis with controllable smoothness for a problem with periodic boundaries) and that a tensor product of Laplacian eigenstates also provides a smooth basis for expanding any higher-order correlation of the atomic density within the appropriate hypersphere. We consider several unsupervised metrics of the quality of a basis for a given dataset and show that the Laplacian eigenstate basis has a performance that is much better than some widely used basis sets and competitive with data-driven bases that numerically optimize each metric. Finally, we investigate the role of the basis in building models of the potential energy. In these tests, we find that a combination of the Laplacian eigenstate basis and target-oriented heuristics leads to equal or improved regression performance when compared to both heuristic and data-driven bases in the literature. We conclude that the smoothness of the basis functions is a key aspect of successful atomic density representations. (c) 2022 Author(s).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (37)
Base orthonormée
En géométrie vectorielle, une base orthonormale ou base orthonormée (BON) d'un espace euclidien ou hermitien est une base de cet espace vectoriel constituée de vecteurs de norme 1 et orthogonaux deux à deux. Dans une telle base, les coordonnées d'un vecteur quelconque de l'espace sont égales aux produits scalaires respectifs de ce vecteur par chacun des vecteurs de base, et le produit scalaire de deux vecteurs quelconques a une expression canonique en fonction de leurs coordonnées.
Base (algèbre linéaire)
vignette|Le même vecteur peut être représenté dans deux bases différentes (flèches violettes et rouges). En mathématiques, une base d'un espace vectoriel V est une famille de vecteurs de V linéairement indépendants et dont tout vecteur de V est combinaison linéaire. En d'autres termes, une base de V est une famille libre de vecteurs de V qui engendre V. alt=|vignette|upright=2|. La géométrie plane, celle d'Euclide, peut comporter une approche algébrique, celle de Descartes.
Base (chimie quantique)
Une base en chimie quantique est un ensemble de fonctions utilisées afin de modéliser des orbitales moléculaires, qui sont développées comme combinaisons linéaires de telles fonctions avec des poids ou coefficients à déterminer. Ces fonctions sont habituellement des orbitales atomiques, car centrées sur les atomes, mais des fonctions centrées sur les liaisons ou les fonctions centrées des doublets non liants ont été utilisées comme l'ont été des paires de fonctions centrées sur les deux lobes d'une orbitale p.
Afficher plus
Publications associées (37)

Efficient and insightful descriptors for representing molecular and material space

Alexander Jan Goscinski

Data-driven approaches have been applied to reduce the cost of accurate computational studies on materials, by using only a small number of expensive reference electronic structure calculations for a representative subset of the materials space, and using ...
EPFL2024

Advancing Computational Chemistry with Stochastic and Artificial Intelligence Approaches

Justin Villard

Computational chemistry aims to simulate reactions and molecular properties at the atomic scale, advancing the design of novel compounds and materials with economic, environmental, and societal implications. However, the field relies on approximate quantum ...
EPFL2023

Plane Waves Versus Correlation-Consistent Basis Sets: A Comparison of MP2 Non-Covalent Interaction Energies in the Complete Basis Set Limit

Ursula Röthlisberger, Justin Villard, Martin Peter Bircher

Second-order Moller-Plesset perturbation theory (MP2) is the most expedient wave function-based method for considering electron correlation in quantum chemical calculations and, as such, provides a cost-effective framework to assess the effects of basis se ...
Washington2023
Afficher plus
MOOCs associés (20)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.