Résonance magnétique nucléairevignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation.
Champ électriquethumb|Champ électrique associé à son propagateur qu'est le photon. right|thumb|Michael Faraday introduisit la notion de champ électrique. En physique, le champ électrique est le champ vectoriel créé par des particules électriquement chargées. Plus précisément, des particules chargées modifient les propriétés locales de l'espace, ce que traduit justement la notion de champ. Si une autre charge se trouve dans ce champ, elle subira l'action de la force électrique exercée à distance par la particule : le champ électrique est en quelque sorte le "médiateur" de cette action à distance.
Aimant monomoléculaireUn aimant monomoléculaire ou nano-aimant moléculaire, appelé aussi SMM, de l'acronyme anglais Single Molecule Magnet, est une molécule faisant partie des composés de coordination qui a un comportement superparamagnétique : c'est un aimant uniquement en dessous d'une certaine température dite de blocage. Les aimants monomoléculaires sont des macromolécules, c'est-à-dire composés de 100 à atomes. Bien que découverts en 1993, nommés en 1996, l'idée du premier aimant monomoléculaire () fut décrite en 1980.
Spin echoIn magnetic resonance, a spin echo or Hahn echo is the refocusing of spin magnetisation by a pulse of resonant electromagnetic radiation. Modern nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) make use of this effect. The NMR signal observed following an initial excitation pulse decays with time due to both spin relaxation and any inhomogeneous effects which cause spins in the sample to precess at different rates. The first of these, relaxation, leads to an irreversible loss of magnetisation.
Supraconducteur à haute températureUn supraconducteur à haute température (en anglais, high-temperature superconductor : high- ou HTSC) est un matériau présentant une température critique de supraconductivité relativement élevée par rapport aux supraconducteurs conventionnels, c'est-à-dire en général à des températures supérieures à soit . Ce terme désigne en général la famille des matériaux de type cuprate, dont la supraconductivité existe jusqu'à . Mais d'autres familles de supraconducteurs, comme les supraconducteurs à base de fer découverts en 2008, peuvent aussi être désignées par ce même terme.
Champ magnétique terrestreLe champ magnétique terrestre, aussi appelé bouclier terrestre, est un champ magnétique présent dans un vaste espace autour de la Terre (de manière non uniforme du fait de son interaction avec le vent solaire) ainsi que dans la croûte et le manteau. Il a son origine dans le noyau externe, par un mécanisme de dynamo auto-excitée. Dynamo terrestre Selon les études de John Tarduno de l'université de Rochester (États-Unis), la Terre possédait déjà un champ magnétique il y a 3,45 milliards d'années.
Ferrimagnétismevignette|Orientation des moments magnétiques dans deux sous réseaux A et B Le ferrimagnétisme est une propriété magnétique de certains corps solides. Dans un matériau ferrimagnétique, les moments magnétiques sont anti-parallèles mais d'amplitude différente. Il en résulte une aimantation spontanée du matériau. Il se distingue donc à la fois de l'antiferromagnétisme, pour lequel le moment magnétique résultant est nul, et du ferromagnétisme, pour lequel l'aimantation spontanée résulte au niveau microscopique d'un arrangement parallèle des moments magnétiques.
Modèle d'IsingLe modèle d'Ising est un modèle de physique statistique qui a été adapté à divers phénomènes caractérisés par des interactions locales de particules à deux états. L'exemple principal est le ferromagnétisme pour lequel le modèle d'Ising est un modèle sur réseau de moments magnétiques, dans lequel les particules sont toujours orientées suivant le même axe spatial et ne peuvent prendre que deux valeurs. Ce modèle est parfois appelé modèle de Lenz-Ising en référence aux physiciens Wilhelm Lenz et Ernst Ising.
Susceptibilité magnétiqueLa susceptibilité magnétique désigne une propriété d'un matériau qui caractérise la faculté de celui-ci à s'aimanter sous l'effet d'une excitation magnétique émise par un champ. C'est une grandeur sans dimension qu'on note en général par le symbole , ou simplement s'il n'y a pas d'ambiguïté avec la susceptibilité électrique dans le texte. Tout matériau est composé au niveau microscopique d'atomes liés ensemble, chacun de ces atomes pouvant être vu comme un aimant élémentaire si l'on ne s'intéresse qu'aux propriétés magnétiques.
FerromagnétismeLe ferromagnétisme est le mécanisme fondamental par lequel certains matériaux (fer, cobalt, nickel...) sont attirés par des aimants ou forment des aimants permanents. On distingue en physique différents types de magnétismes. Le ferromagnétisme (qui inclut le ferrimagnétisme) se trouve être celui à l’origine des champs magnétiques les plus importants : c’est celui qui crée des forces suffisamment importantes pour être senties et qui est responsable du phénomène bien connu de magnétisme dans les aimants de la vie quotidienne.