Problème de couverture par ensemblesEn informatique théorique, le problème de couverture par ensembles (Set Cover problem en anglais) est un problème d'algorithmique particulièrement important car c'est l'un des 21 problèmes NP-complets de Karp . Étant donné un ensemble A, on dit qu'un élément e est couvert par A si e appartient à A. Étant donné un ensemble U et une famille S de sous-ensembles de U, le problème consiste à couvrir tous les éléments U avec une sous-famille de S la plus petite possible.
Hydrodynamic stabilityIn fluid dynamics, hydrodynamic stability is the field which analyses the stability and the onset of instability of fluid flows. The study of hydrodynamic stability aims to find out if a given flow is stable or unstable, and if so, how these instabilities will cause the development of turbulence. The foundations of hydrodynamic stability, both theoretical and experimental, were laid most notably by Helmholtz, Kelvin, Rayleigh and Reynolds during the nineteenth century.
Equilibrium pointIn mathematics, specifically in differential equations, an equilibrium point is a constant solution to a differential equation. The point is an equilibrium point for the differential equation if for all . Similarly, the point is an equilibrium point (or fixed point) for the difference equation if for . Equilibria can be classified by looking at the signs of the eigenvalues of the linearization of the equations about the equilibria.
Covering problemsIn combinatorics and computer science, covering problems are computational problems that ask whether a certain combinatorial structure 'covers' another, or how large the structure has to be to do that. Covering problems are minimization problems and usually integer linear programs, whose dual problems are called packing problems. The most prominent examples of covering problems are the set cover problem, which is equivalent to the hitting set problem, and its special cases, the vertex cover problem and the edge cover problem.
Probabilistic numericsProbabilistic numerics is an active field of study at the intersection of applied mathematics, statistics, and machine learning centering on the concept of uncertainty in computation. In probabilistic numerics, tasks in numerical analysis such as finding numerical solutions for integration, linear algebra, optimization and simulation and differential equations are seen as problems of statistical, probabilistic, or Bayesian inference.
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Espace de Minkowskithumb|Représentation schématique de l'espace de Minkowski, qui montre seulement deux des trois dimensions spatiales. En géométrie et en relativité restreinte, l'espace de Minkowski du nom de son inventeur Hermann Minkowski, appelé aussi l'espace-temps de Minkowski ou parfois l'espace-temps de Poincaré-Minkowski, est un espace mathématique, et plus précisément un espace affine pseudo-euclidien à quatre dimensions, modélisant l'espace-temps de la relativité restreinte : les propriétés géométriques de cet espace correspondent à des propriétés physiques présentes dans cette théorie.
Expression de forme ferméeEn mathématiques, une expression de forme fermée (également appelée expression fermée, expression de forme close, expression close ou expression explicite) est une expression mathématique pouvant s'obtenir par une combinaison de nombres ou de fonctions et d'opérations de référence. On emploie parfois le terme formule à la place du terme expression : formule de forme fermée, formule explicite, formule de forme close, etc. Le plus souvent, cette terminologie s'emploie pour des solutions d'équations ou de systèmes d'équations.