Wicked problemIn planning and policy, a wicked problem is a problem that is difficult or impossible to solve because of incomplete, contradictory, and changing requirements that are often difficult to recognize. It refers to an idea or problem that cannot be fixed, where there is no single solution to the problem; and "wicked" denotes resistance to resolution, rather than evil. Another definition is "a problem whose social complexity means that it has no determinable stopping point".
Learning rateIn machine learning and statistics, the learning rate is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving toward a minimum of a loss function. Since it influences to what extent newly acquired information overrides old information, it metaphorically represents the speed at which a machine learning model "learns". In the adaptive control literature, the learning rate is commonly referred to as gain. In setting a learning rate, there is a trade-off between the rate of convergence and overshooting.
Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
Conception centrée sur l'utilisateurLa conception centrée sur l'utilisateur ou conception orientée utilisateur (UCD, user-centered design en anglais) est une philosophie et une démarche de conception surtout présente en ergonomie informatique, où les besoins, les attentes et les caractéristiques propres des utilisateurs finaux sont pris en compte à chaque étape du processus de développement d'un produit. La norme ISO 9241-210 qui annule et remplace la norme ISO 13407 définit sept ensembles de pratique de base pour mettre en œuvre le processus de conception centrée sur l'utilisateur.
Séparation et évaluationUn algorithme par séparation et évaluation, ou branch and bound en anglais, est une méthode générique de résolution de problèmes d'optimisation combinatoire. Cet algorithme a été introduit par Ailsa Land et Alison Harcourt (Doig) en 1960. L'optimisation combinatoire consiste à trouver un point minimisant une fonction, appelée coût, dans un ensemble dénombrable. Une méthode naïve pour résoudre ce problème est d'énumérer toutes les solutions du problème, de calculer le coût pour chacune, puis de donner le minimum.
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Propriété de la borne supérieureEn mathématiques, un ensemble ordonné est dit posséder la propriété de la borne supérieure si tous ses sous-ensembles non vides et majorés possèdent une borne supérieure. De même, un ensemble ordonné possède la propriété de la borne inférieure si tous ses sous-ensembles non vides et minorés possèdent une borne inférieure. Il s'avère que ces deux propriétés sont équivalentes. On dit aussi parfois qu'un ensemble possédant la propriété de la borne supérieure est Dedekind complet. Soit un ensemble ordonné (partiellement ou totalement).
Optimisation pour les moteurs de recherchealt=Illustration du principe de fonctionnement du PageRank|vignette|Illustration du principe de fonctionnement du PageRank. Loptimisation pour les moteurs de recherche, aussi connue sous le sigle SEO (de l'anglais « Search Engine Optimization »), inclut l'ensemble des techniques qui visent à améliorer le positionnement d'une page, d'un site ou d'une application web dans la page de résultats d'un moteur de recherche (SERP pour « Search Engine Results Page »).
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.