Résumé
In mathematics, the least-upper-bound property (sometimes called completeness or supremum property or l.u.b. property) is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X. Not every (partially) ordered set has the least upper bound property. For example, the set of all rational numbers with its natural order does not have the least upper bound property. The least-upper-bound property is one form of the completeness axiom for the real numbers, and is sometimes referred to as Dedekind completeness. It can be used to prove many of the fundamental results of real analysis, such as the intermediate value theorem, the Bolzano–Weierstrass theorem, the extreme value theorem, and the Heine–Borel theorem. It is usually taken as an axiom in synthetic constructions of the real numbers, and it is also intimately related to the construction of the real numbers using Dedekind cuts. In order theory, this property can be generalized to a notion of completeness for any partially ordered set. A linearly ordered set that is dense and has the least upper bound property is called a linear continuum. Let S be a non-empty set of real numbers. A real number x is called an upper bound for S if x ≥ s for all s ∈ S. A real number x is the least upper bound (or supremum) for S if x is an upper bound for S and x ≤ y for every upper bound y of S. The least-upper-bound property states that any non-empty set of real numbers that has an upper bound must have a least upper bound in real numbers. Completeness (order theory) More generally, one may define upper bound and least upper bound for any subset of a partially ordered set X, with “real number” replaced by “element of X”. In this case, we say that X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound in X. For example, the set Q of rational numbers does not have the least-upper-bound property under the usual order.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.