Parallélisme (informatique)vignette|upright=1|Un des éléments de Blue Gene L cabinet, un des supercalculateurs massivement parallèles les plus rapides des années 2000. En informatique, le parallélisme consiste à mettre en œuvre des architectures d'électronique numérique permettant de traiter des informations de manière simultanée, ainsi que les algorithmes spécialisés pour celles-ci. Ces techniques ont pour but de réaliser le plus grand nombre d'opérations en un temps le plus petit possible.
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Estimation de mouvementL'estimation de mouvement ou Motion estimation est un procédé qui consiste à étudier le déplacement des objets dans une séquence vidéo, en cherchant la corrélation entre deux images successives afin de prédire le changement de position du contenu. Le mouvement est un problème mal posé en vidéo puisqu'il décrit un contexte en trois dimensions alors que les images sont une projection de scènes 3D dans un plan en 2D. En général, il est représenté par un vecteur de mouvement qui décrit une transformation d'une image en deux dimensions vers une autre.
Opinion miningEn informatique, l'opinion mining (aussi appelé sentiment analysis) est l'analyse des sentiments à partir de sources textuelles dématérialisées sur de grandes quantités de données (big data). Ce procédé apparait au début des années 2000 et connait un succès grandissant dû à l'abondance de données provenant de réseaux sociaux, notamment celles fournies par Twitter. L'objectif de l’opinion mining est d'analyser une grande quantité de données afin d'en déduire les différents sentiments qui y sont exprimés.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Modèle de Markov cachéUn modèle de Markov caché (MMC, terme et définition normalisés par l’ISO/CÉI [ISO/IEC 2382-29:1999]) — (HMM)—, ou plus correctement (mais non employé) automate de Markov à états cachés, est un modèle statistique dans lequel le système modélisé est supposé être un processus markovien de paramètres inconnus. Contrairement à une chaîne de Markov classique, où les transitions prises sont inconnues de l'utilisateur mais où les états d'une exécution sont connus, dans un modèle de Markov caché, les états d'une exécution sont inconnus de l'utilisateur (seuls certains paramètres, comme la température, etc.