Publication

Iterative Learning of Grasp Adaptation through Human Corrections

Résumé

In the context of object interaction and manipulation, one characteristic of a robust grasp is its ability to comply with external perturbations applied to the grasped object while still maintaining the grasp. In this work we introduce an approach for grasp adaptation which learns a statistical model to adapt hand posture solely based on the perceived contact between the object and fingers. Using a multi-step learning procedure, the model dataset is built by first demonstrating an initial hand posture, which is then physically corrected by a human teacher pressing on the fingertips, exploiting compliance in the robot hand. The learner then replays the resulting sequence of hand postures, to generate a dataset of posture-contact pairs that are not influenced by the touch of the teacher. A key feature of this work is that the learned model may be further refined by repeating the correction-replay steps. Alternatively, the model may be reused in the development of new models, characterized by the contact signatures of a different object. Our approach is empirically validated on the iCub robot. We demonstrate grasp adaptation in response to changes in contact, and show successful model reuse and improved adaptation with additional rounds of model refinement.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.