**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Labelling Game for Twitter Streams

Résumé

The main goal of this project is to build a mean and to populate a database with correct information regarding some decided pairings. This database will then be compared to the results of algorithms that process the same pairings, which provides a way to assess algorithms’ performance. The main focus is set on the following pairing, tweet messages and company. For a given set of tweet messages, we should be able to decide if either the word refers to the given company or not. In order to populate the database with such information, a web game application is used, which will allows any kind of users who wishes to play to give its feedback. We record those feedbacks and when enough feedbacks are collected, we may be able to build a subset of the correct information we want based on the feedbacks.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Concepts associés (7)

Information

vignette|redresse=0.6|Pictogramme représentant une information.
L’information est un de la discipline des sciences de l'information et de la communication (SIC). Au sens étymologique, l'« informatio

Algorithme

thumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation).
Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de

Technologie de l'information

La technologie de l'information (TI), ou IT pour « information technology » en anglais, appelée aussi système informatique, désigne le domaine technique du traitement de l'information, souvent dans u

Publications associées (16)

Chargement

Chargement

Chargement

Machine Learning is a modern and actively developing field of computer science, devoted to extracting and estimating dependencies from empirical data. It combines such fields as statistics, optimization theory and artificial intelligence. In practical tasks, the general aim of Machine Learning is to construct algorithms able to generalize and predict in previously unseen situations based on some set of examples. Given some finite information, Machine Learning provides ways to exract knowledge, describe, explain and predict from data. Kernel Methods are one of the most successful branches of Machine Learning. They allow applying linear algorithms with well-founded properties such as generalization ability, to non-linear real-life problems. Support Vector Machine is a well-known example of a kernel method, which has found a wide range of applications in data analysis nowadays. In many practical applications, some additional prior knowledge is often available. This can be the knowledge about the data domain, invariant transformations, inner geometrical structures in data, some properties of the underlying process, etc. If used smartly, this information can provide significant improvement to any data processing algorithm. Thus, it is important to develop methods for incorporating prior knowledge into data-dependent models. The main objective of this thesis is to investigate approaches towards learning with kernel methods using prior knowledge. Invariant learning with kernel methods is considered in more details. In the first part of the thesis, kernels are developed which incorporate prior knowledge on invariant transformations. They apply when the desired transformation produce an object around every example, assuming that all points in the given object share the same class. Different types of objects, including hard geometrical objects and distributions are considered. These kernels were then applied for images classification with Support Vector Machines. Next, algorithms which specifically include prior knowledge are considered. An algorithm which linearly classifies distributions by their domain was developed. It is constructed such that it allows to apply kernels to solve non-linear tasks. Thus, it combines the discriminative power of support vector machines and the well-developed framework of generative models. It can be applied to a number of real-life tasks which include data represented as distributions. In the last part of the thesis, the use of unlabelled data as a source of prior knowledge is considered. The technique of modelling the unlabelled data with a graph is taken as a baseline from semi-supervised manifold learning. For classification problems, we use this apporach for building graph models of invariant manifolds. For regression problems, we use unlabelled data to take into account the inner geometry of the input space. To conclude, in this thesis we developed a number of approaches for incorporating some prior knowledge into kernel methods. We proposed invariant kernels for existing algorithms, developed new algorithms and adapted a technique taken from semi-supervised learning for invariant learning. In all these cases, links with related state-of-the-art approaches were investigated. Several illustrative experiments were carried out on real data on optical character recognition, face image classification, brain-computer interfaces, and a number of benchmark and synthetic datasets.

A common trend in machine learning and pattern classification research is the exploitation of massive amounts of information in order to achieve an increase in performance. In particular, learning from huge collections of data obtained from the web, and using multiple features generated from different sources, have led to significantly boost of performance on problems that have been considered very hard for several years. In this thesis, we present two ways of using these information to build learning systems with robust performance and some degrees of autonomy. These ways are Cue Integration and Cue Exploitation, and constitute the two building blocks of this thesis. In the first block, we introduce several algorithms to answer the research question on how to integrate optimally multiple features. We first present a simple online learning framework which is a wrapper algorithm based on the high-level integration approach in the cue integration literature. It can be implemented with existing online learning algorithms, and preserves the theoretical properties of the algorithms being used. We then extend the Multiple Kernel Learning (MKL) framework, where each feature is converted into a kernel and the system learns the cue integration classifier by solving a joint optimization problem. To make the problem practical, We have designed two new regularization functions making it possible to optimize the problem efficiently. This results in the first online method for MKL. We also show two algorithms to solve the batch problem of MKL. Both of them have a guaranteed convergence rate. These approaches achieve state-of-the-art performance on several standard benchmark datasets, and are order of magnitude faster than other MKL solvers. In the second block, We present two examples on how to exploit information between different sources, in order to reduce the effort of labeling a large amount of training data. The first example is an algorithm to learn from partially annotated data, where each data point is tagged with a few possible labels. We show that it is possible to train a face classification system from data gathered from Internet, without any human labeling, but generating in an automatic way possible lists of labels from the captions of the images. Another example is under the transfer learning setting. The system uses existing models from potentially correlated tasks as experts, and transfers their outputs over the new incoming samples, of a new learning task where very few labeled data are available, to boost the performance.

Machine Learning is a modern and actively developing field of computer science, devoted to extracting and estimating dependencies from empirical data. It combines such fields as statistics, optimization theory and artificial intelligence. In practical tasks, the general aim of Machine Learning is to construct algorithms able to generalize and predict in previously unseen situations based on some set of examples. Given some finite information, Machine Learning provides ways to exract knowledge, describe, explain and predict from data. Kernel Methods are one of the most successful branches of Machine Learning. They allow applying linear algorithms with well-founded properties such as generalization ability, to non-linear real-life problems. Support Vector Machine is a well-known example of a kernel method, which has found a wide range of applications in data analysis nowadays. In many practical applications, some additional prior knowledge is often available. This can be the knowledge about the data domain, invariant transformations, inner geometrical structures in data, some properties of the underlying process, etc. If used smartly, this information can provide significant improvement to any data processing algorithm. Thus, it is important to develop methods for incorporating prior knowledge into data-dependent models. The main objective of this thesis is to investigate approaches towards learning with kernel methods using prior knowledge. Invariant learning with kernel methods is considered in more details. In the first part of the thesis, kernels are developed which incorporate prior knowledge on invariant transformations. They apply when the desired transformation produce an object around every example, assuming that all points in the given object share the same class. Different types of objects, including hard geometrical objects and distributions are considered. These kernels were then applied for images classification with Support Vector Machines. Next, algorithms which specifically include prior knowledge are considered. An algorithm which linearly classifies distributions by their domain was developed. It is constructed such that it allows to apply kernels to solve non-linear tasks. Thus, it combines the discriminative power of support vector machines and the well-developed framework of generative models. It can be applied to a number of real-life tasks which include data represented as distributions. In the last part of the thesis, the use of unlabelled data as a source of prior knowledge is considered. The technique of modelling the unlabelled data with a graph is taken as a baseline from semi-supervised manifold learning. For classification problems, we use this apporach for building graph models of invariant manifolds. For regression problems, we use unlabelled data to take into account the inner geometry of the input space. To conclude, in this thesis we developed a number of approaches for incorporating some prior knowledge into kernel methods. We proposed invariant kernels for existing algorithms, developed new algorithms and adapted a technique taken from semi-supervised learning for invariant learning. In all these cases, links with related state-of-the-art approaches were investigated. Several illustrative experiments were carried out on real data on optical character recognition, face image classification, brain-computer interfaces, and a number of benchmark and synthetic datasets.