This overview presents computational algorithms for generating 3D object grasps with autonomous multi-fingered robotic hands. Robotic grasping has been an active research subject for decades, and a great deal of effort has been spent on grasp synthesis algorithms. Existing papers focus on reviewing the mechanics of grasping and the finger–object contact interactions Bicchi and Kumar (2000) or robot hand design and their control Al-Gallaf et al. (1993) . Robot grasp synthesis algorithms have been reviewed in Shimoga (1996) , but since then an important progress has been made toward applying learning techniques to the grasping problem. This overview focuses on analytical as well as empirical grasp synthesis approaches.