Publication

Distributed Karhunen-Loeve Transform With Nested Subspaces

Michael Christoph Gastpar, Naveen Goela
2009
Article de conférence
Résumé

A network in which sensors observe a common Gaussian source is analyzed. Using a fixed linear transform, each sensor compresses its high-dimensional observation into a low-dimensional representation. The latter is provided to a central decoder that reconstructs the source according to a mean squared error (MSE) distortion metric. The Distributed Karhunen-Loeve Transform (d-KLT) has been shown to provide a (locally) optimal linear solution for compression at each sensor. While the d-KLT achieves the lowest distortion linear reconstruction known, it does not maintain a nested subspace structure. In the case of ideal links to the decoder, this paper presents transforms that maintain nested subspaces, allowing the decoder to approximate a delay-limited source in an online fashion according to a desired sensor schedule. A distortion envelope for one distributed transform with nested subspace properties (d-nested-KLT) is provided. In the case of i.i.d. noise to the decoder, under assumptions of power allocation over subspaces, it is also possible to achieve nested subspaces utilizing correlations between sensors' observations. Results are applicable for data access over networks, and online information processing in sensor networks.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.