Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In the present study, a high energy pulsed laser is used to generate a millimetric cavitation bubble within a water flow over a symmetric hydrofoil. The bubble is initiated at different locations in the vicinity of the hydrofoil leading edge. A high-speed camera is used to observe the motion and the deformation of the bubble as it travels along the hydrofoil suction side. We have found that the pressure gradient plays a major role on the bubble dynamic and subsequent phenomena. For a specific region of the flow, the micro-jet initiated at the collapse of the bubble is no more directed towards the hydrofoil surface, as commonly observed in still water. In this case, we also observe a spectacular behaviour of the cavity rebound, which migrates towards the solid surface despite of the outward direction of the micro-jet.
Karen Ann J Mulleners, Julien Dominique Claude Deparday
Mohamed Farhat, Thomas Antoine Nicolas Berger, Qin Wu, Yunqing Liu