On some numerical aspects of an active strain model in cardiac mechanics
Publications associées (48)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Multiscale problems, such as modelling flows through porous media or predicting the mechanical properties of composite materials, are of great interest in many scientific areas. Analytical models describing these phenomena are rarely available, and one mus ...
In this paper, we propose a three-level linearized implicit difference scheme for the two-dimensional spatial fractional nonlinear complex Ginzburg-Landau equation. We prove that the difference scheme is uniquely solvable, stable and convergent under mild ...
Deriving the time-dependent expected reward function associated with a continuous-time Markov chain involves the computation of its transient deviation matrix. In this paper we focus on the special case of a finite quasi-birth-and-death (QBD) process, moti ...
We present the development of a multiphase adjoint for the Community Multiscale Air Quality (CMAQ) model, a widely used chemical transport model. The adjoint model provides location- and time-specific gradients that can be used in various applications such ...
In this paper, we propose a monolithic algorithm for the numerical solution of the electromechanics model of the left ventricle in the human heart. Our coupled model integrates the monodomain equation with the Bueno-Orovio minimal model for electrophysiolo ...
We consider the numerical approximation of lipid biomembranes at equilibrium described by the Canham-Helfrich model, according to which the bending energy is minimized under area and volume constraints. Energy minimization is performed via L-2-gradient flo ...
We consider the numerical approximation of a risk-averse optimal control problem for an elliptic partial differential equation (PDE) with random coefficients. Specifically, the control function is a deterministic, dis- tributed forcing term that minimizes ...
In this work we study, from the numerical point of view, a problem involving one-dimensional thermoelastic mixtures with two different temperatures; that is, when each component of the mixture has its own temperature. The mechanical problem consists of two ...
Discretization methods such as finite differences or finite elements were usually employed to provide high fidelity solution approximations for reduced order modeling of parameterized partial differential equations. In this paper, a novel discretization te ...
We consider the numerical approximation of lipid biomembranes, including red blood cells, described through the Canham-Helfrich model, according to which the shape minimizes the bending energy under area and volume constraints. Energy minimization is perfo ...