Publication

The time-dependent expected reward and deviation matrix of a finite QBD process

Résumé

Deriving the time-dependent expected reward function associated with a continuous-time Markov chain involves the computation of its transient deviation matrix. In this paper we focus on the special case of a finite quasi-birth-and-death (QBD) process, motivated by the desire to compute the expected revenue lost in a MAP/PH/1/C queue. We use two different approaches in this context. The first is based on the solution of a finite system of matrix difference equations; it provides an expression for the blocks of the expected reward vector, the deviation matrix, and the mean first passage time matrix. The second approach, based on some results in the perturbation theory of Markov chains, leads to a recursive method to compute the full deviation matrix of a finite QBD process. We compare the two approaches using some numerical examples. (C) 2019 Published by Elsevier Inc.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.