Lambda liftingLambda lifting is a meta-process that restructures a computer program so that functions are defined independently of each other in a global scope. An individual "lift" transforms a local function into a global function. It is a two step process, consisting of; Eliminating free variables in the function by adding parameters. Moving functions from a restricted scope to broader or global scope. The term "lambda lifting" was first introduced by Thomas Johnsson around 1982 and was historically considered as a mechanism for implementing functional programming languages.
Fraction continue généraliséeEn mathématiques, une fraction continue généralisée est une expression de la forme : comportant un nombre fini ou infini d'étages. C'est donc une généralisation des fractions continues simples puisque dans ces dernières, tous les a sont égaux à 1. Une fraction continue généralisée est une généralisation des fractions continues où les numérateurs et dénominateurs partiels peuvent être des complexes quelconques : où an (n > 0) sont les numérateurs partiels et les bn les dénominateurs partiels.
Bar gayvignette|Cancan (Bruxelles, Belgique) Un bar gay est un bar dont la clientèle est exclusivement, ou est de manière prépondérante, gay ou lesbienne, et qui est souvent l'épicentre de la culture gay. Il ne faut cependant pas les confondre avec les bars gay-friendly qui sont simplement des lieux où l'homosexualité est admise sans concession.
Pi (lettre grecque)Pi (capitale Π, minuscule π ou parfois π ; en grec πι) est la lettre de l'alphabet grec, précédée par omicron et suivie par rhô. Dérivée de la lettre pey x12px de l'alphabet phénicien, elle est l'ancêtre de la lettre P de l'alphabet latin et de la lettre П de l'alphabet cyrillique. En grec moderne, la lettre pi représente une consonne occlusive bilabiale sourde, . Cette valeur est en général également celle du grec ancien.
Formule de fraction continue d'EulerEn théorie analytique des nombres, la formule de fraction continue d'Euler est une identité reliant les séries aux fractions continues généralisées, publiée par Leonhard Euler en 1748 et utile dans l'étude du problème de convergence général pour les fractions continues à coefficients complexes. Euler a établi une identité dont la transcription est, en notation de Pringsheim : cette égalité signifiant seulement que les sommes partielles de la série de gauche sont égales aux réduites de la fraction continue de droite, autrement dit : Il trouve simplement cette formule par une analyse rétrograde des relations fondamentales sur les réduites.