Graphe bipartiEn théorie des graphes, un graphe est dit biparti si son ensemble de sommets peut être divisé en deux sous-ensembles disjoints et tels que chaque arête ait une extrémité dans et l'autre dans . Un graphe biparti permet notamment de représenter une relation binaire. Il existe plusieurs façons de caractériser un graphe biparti. Par le nombre chromatique Les graphes bipartis sont les graphes dont le nombre chromatique est inférieur ou égal à 2. Par la longueur des cycles Un graphe est biparti si et seulement s'il ne contient pas de cycle impair.
Arête transversaleEn théorie des hypergraphes, une transversale est une partie des sommets qui rencontre toutes les arêtes d'un hypergraphe. L'ensemble des transversales est la grille. C'est l'analogue du problème de couverture par sommets (vertex cover en anglais) chez les graphes. On rappelle qu'un hypergraphe est un couple où est un ensemble de sommets, et une famille de sous-ensembles de qu'on nomme arêtes, ou hyperarêtes. Une transversale de est un ensemble tel que pour toute arête appartenant à , .
Graphe cordalthumb|Un cycle, en noir, avec deux cordes, en vert. Si l'on s'en tient à cette partie, le graphe est cordal. Supprimer l'une des arêtes vertes rendrait le graphe non cordal. En effet, l'autre arête verte formerait, avec les trois arêtes noires, un cycle de longueur 4 sans corde. En théorie des graphes, on dit qu'un graphe est cordal si chacun de ses cycles de quatre sommets ou plus possède une corde, c'est-à-dire une arête reliant deux sommets non adjacents du cycle.
Couplage (théorie des graphes)En théorie des graphes, un couplage ou appariement (en anglais matching) d'un graphe est un ensemble d'arêtes de ce graphe qui n'ont pas de sommets en commun. Soit un graphe simple non orienté G = (S, A) (où S est l'ensemble des sommets et A l'ensemble des arêtes, qui sont certaines paires de sommets), un couplage M est un ensemble d'arêtes deux à deux non adjacentes. C'est-à-dire que M est une partie de l'ensemble A des arêtes telle que Un couplage maximum est un couplage contenant le plus grand nombre possible d'arêtes.
Vertex coverIn graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices that includes at least one endpoint of every edge of the graph. In computer science, the problem of finding a minimum vertex cover is a classical optimization problem. It is NP-hard, so it cannot be solved by a polynomial-time algorithm if P ≠ NP. Moreover, it is hard to approximate – it cannot be approximated up to a factor smaller than 2 if the unique games conjecture is true. On the other hand, it has several simple 2-factor approximations.
Rainbow matchingIn the mathematical discipline of graph theory, a rainbow matching in an edge-colored graph is a matching in which all the edges have distinct colors. Given an edge-colored graph G = (V,E), a rainbow matching M in G is a set of pairwise non-adjacent edges, that is, no two edges share a common vertex, such that all the edges in the set have distinct colors. A maximum rainbow matching is a rainbow matching that contains the largest possible number of edges. Rainbow matchings are of particular interest given their connection to transversals of Latin squares.
Optimization problemIn mathematics, computer science and economics, an optimization problem is the problem of finding the best solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set.
Graphe scindévignette|240x240px| Un graphe scindé, partitionné en une clique et un ensemble stable. En théorie des graphes, un graphe scindé ou graphe séparé (en anglais : split graph) est un graphe dont les sommets peuvent être partitionnés deux parties : une clique et un ensemble stable. Les graphes scindés ont été étudiés pour la première fois par Földes et Marteau en 1977, et introduit indépendamment par Tyshkevich et Tchernyak en 1979 .
Inclusion (mathématiques)En mathématiques, l’inclusion est une relation d'ordre entre ensembles. On dit qu'un ensemble A est inclus dans un ensemble B si tous les éléments de A sont aussi éléments de B. On dit dans ce cas que A est un sous-ensemble ou une partie de B, ou encore que B est sur-ensemble de A. Cette relation n'est pas symétrique a priori, car il peut y avoir des éléments du deuxième ensemble qui n'appartiennent pas au premier. Plus précisément, il y a inclusion dans les deux sens entre deux ensembles si et seulement si ces deux ensembles sont égaux.
Line graphEn théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.