Réduction de la dimensionnalitévignette|320x320px|Animation présentant la projection de points en deux dimensions sur les axes obtenus par analyse en composantes principales, une méthode populaire de réduction de la dimensionnalité La réduction de la dimensionnalité (ou réduction de (la) dimension) est un processus étudié en mathématiques et en informatique, qui consiste à prendre des données dans un espace de grande dimension, et à les remplacer par des données dans un espace de plus petite dimension.
Loadable Kernel ModuleDans un système d'exploitation, un module est une partie du noyau qui peut être intégrée pendant son fonctionnement. Le terme anglais généralement employé pour les désigner est Loadable Kernel Module, abrégé LKM, ou . Cette fonctionnalité existe dans les noyaux Linux et les noyaux BSD. C'est une alternative aux fonctionnalités compilées dans le noyau, qui ne peuvent être modifiées qu'en relançant le système. Les modules du noyau Linux sont généralement placés dans /lib/modules. Ils utilisent l'extension .
Linear predictor functionIn statistics and in machine learning, a linear predictor function is a linear function (linear combination) of a set of coefficients and explanatory variables (independent variables), whose value is used to predict the outcome of a dependent variable. This sort of function usually comes in linear regression, where the coefficients are called regression coefficients. However, they also occur in various types of linear classifiers (e.g.
GrassmannienneEn mathématiques, les grassmanniennes sont des variétés dont les points correspondent aux sous-espaces vectoriels d'un espace vectoriel fixé. On note G(k, n) ou G(K) la grassmannienne des sous-espaces de dimension k dans un espace de dimension n sur le corps K. Ces espaces portent le nom de Hermann Grassmann qui en donna une paramétrisation et sont encore appelés grassmanniennes des « k-plans ». Pour k = 1, la grassmannienne est l'espace projectif associé à l'espace vectoriel.
Kernel.orgkernel.org is the main distribution point of source code for the Linux kernel, which is the base of the Linux operating system. The website and related infrastructure, which is operated by the Linux Kernel Organization, host the repositories that make all versions of the kernel's source code available to all users. The main purpose of kernel.org is to host repositories used by Linux kernel developers and maintainers of various Linux distributions. Additionally, it hosts various other projects or their mirrors, including the Linux Documentation Project (LDP) and CPAN.
Nombre de GrassmannEn physique mathématique, un nombre de Grassmann — ainsi nommé d'après Hermann Günther Grassmann mais aussi appelé supernombre — est un élément de l'algèbre extérieure — ou algèbre de Grassmann — d'un espace vectoriel, le plus souvent sur les nombres complexes. Dans le cas particulier où cet espace est une droite vectorielle réelle, un tel nombre s'appelle un nombre dual. Les nombres de Grassmann ont d'abord été employés en physique pour exprimer une représentation par intégrales de chemins pour les champs de fermions, mais sont à présent largement utilisés pour décrire le sur lequel on définit une supersymétrie.
SupermanifoldIn physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below. An informal definition is commonly used in physics textbooks and introductory lectures. It defines a supermanifold as a manifold with both bosonic and fermionic coordinates. Locally, it is composed of coordinate charts that make it look like a "flat", "Euclidean" superspace.
Coordonnées grassmanniennesLes coordonnées grassmanniennes sont une généralisation des coordonnées plückeriennes qui permettent de paramétrer les sous espaces de dimension de l'espace vectoriel par un élément de l'espace projectif de l'espace vectoriel des produits extérieurs des familles de vecteurs de . Le plongement plückerien est un plongement naturel de la variété grassmannienne dans l'espace projectif : Ce plongement est défini comme suit.