Femtosecond pulse shapingIn optics, femtosecond pulse shaping refers to manipulations with temporal profile of an ultrashort laser pulse. Pulse shaping can be used to shorten/elongate the duration of optical pulse, or to generate complex pulses. Generation of sequences of ultrashort optical pulses is key in realizing ultra high speed optical networks, Optical Code Division Multiple Access (OCDMA) systems, chemical and biological reaction triggering and monitoring etc.
Ultrashort pulseIn optics, an ultrashort pulse, also known as an ultrafast event, is an electromagnetic pulse whose time duration is of the order of a picosecond (10−12 second) or less. Such pulses have a broadband optical spectrum, and can be created by mode-locked oscillators. Amplification of ultrashort pulses almost always requires the technique of chirped pulse amplification, in order to avoid damage to the gain medium of the amplifier. They are characterized by a high peak intensity (or more correctly, irradiance) that usually leads to nonlinear interactions in various materials, including air.
Optique adaptativeL'optique adaptative est une technique qui permet de corriger en temps réel les déformations évolutives et non-prédictives d'un front d'onde grâce à un miroir déformable. Elle utilise un principe similaire à l'optique active. Tout d'abord développée dans les années 1950, son domaine principal d'utilisation est l'astronomie mais commence à s'étendre à bon nombre d'autres domaines (fusion, médical, télécommunications). On commence à l'utiliser en ophtalmologie afin de produire des images très précises de la rétine.
Blocage de modeLe blocage de mode ou verrouillage de mode désigne une technique de synchronisation de la phase des modes laser destinée à produire de courtes et intenses impulsions lumineuses. Le blocage de mode est réalisé à l'aide de différents éléments optiques : colorant à absorbant saturable, modulateur acousto-optique, cellule de Pockels... La principale application du blocage de mode est la réalisation de laser femtoseconde. Les premiers lasers à colorant délivrant de courtes impulsions sont apparus dans les années 1970, mais les impulsions qu'ils délivrent ne sont pas suffisamment stables .
Laser à colorantvignette|316x316px|Gros plan d'un laser à colorant CW de table à base de rhodamine 6G, émettant à 580 nm (jaune). Le faisceau laser émis est visible sous forme de lignes jaunes pâles entre la fenêtre jaune (au centre) et l'optique jaune (en haut à droite), où il se reflète à travers l'image vers un miroir invisible, et revient dans le jet de colorant depuis le coin inférieur gauche. La solution de colorant orange entre dans le laser par la gauche et sort par la droite, toujours brillante de phosphorescence triplet, et est pompée par un faisceau de 514 nm (bleu-vert) provenant d'un laser à argon.
Optique de FourierL'optique de Fourier (du nom de Joseph Fourier), est un domaine de l'optique ondulatoire se basant sur la notion de transformée de Fourier. L'optique ondulatoire utilise principalement le principe de Huygens-Fresnel pour aboutir à des résultats comme celui des fentes de Young, ou de la tache d'Airy. Ces calculs sont relativement compliqués, et pour les simplifier, il est possible de se placer dans le cadre de certaines approximations. Par exemple, la diffraction de Fraunhofer suppose que l'on observe la figure de diffraction à très grande distance de l'objet diffractant.
Diffraction-limited systemIn optics, any optical instrument or system a microscope, telescope, or camera has a principal limit to its resolution due to the physics of diffraction. An optical instrument is said to be diffraction-limited if it has reached this limit of resolution performance. Other factors may affect an optical system's performance, such as lens imperfections or aberrations, but these are caused by errors in the manufacture or calculation of a lens, whereas the diffraction limit is the maximum resolution possible for a theoretically perfect, or ideal, optical system.
Laserthumb|250px|Lasers rouges (660 & ), verts (532 & ) et bleus (445 & ). thumb|250px|Rayon laser à travers un dispositif optique. thumb|250px|Démonstration de laser hélium-néon au laboratoire Kastler-Brossel à l'Université Pierre-et-Marie-Curie. Un laser (acronyme issu de l'anglais light amplification by stimulated emission of radiation qui signifie « amplification de la lumière par émission stimulée de radiation ») est un système photonique.
OptiqueL'optique est la branche de la physique qui traite de la lumière, de son comportement et de ses propriétés, du rayonnement électromagnétique à la vision en passant par les systèmes utilisant ou émettant de la lumière. Du fait de ses propriétés ondulatoires, le domaine de la lumière peut couvrir le lointain UV jusqu'au lointain IR en passant par les longueurs d'onde visibles. Ces propriétés recouvrent alors le domaine des ondes radio, micro-ondes, des rayons X et des radiations électromagnétiques.
Spectroscopie laser ultrarapideLa spectroscopie laser ultrarapide est une technique spectroscopique qui utilise des lasers à impulsions ultracourtes pour l'étude de la dynamique sur des échelles de temps extrêmement courtes, de l'attoseconde (10−18 s) à la nanoseconde (10−9 s). Différentes méthodes sont utilisées pour examiner la dynamique des porteurs de charge, des atomes et des molécules. De nombreuses procédures différentes ont été développées pour différentes échelles de temps et différentes plages d'énergie des photons ; quelques méthodes courantes sont énumérées ci-dessous.