Stabilité de LiapounovEn mathématiques et en automatique, la notion de stabilité de Liapounov (ou, plus correctement, de stabilité au sens de Liapounov) apparaît dans l'étude des systèmes dynamiques. De manière générale, la notion de stabilité joue également un rôle en mécanique, dans les modèles économiques, les algorithmes numériques, la mécanique quantique, la physique nucléaire Un exemple typique de système stable au sens de Liapounov est celui constitué d'une bille roulant sans frottement au fond d'une coupelle ayant la forme d'une demi-sphère creuse : après avoir été écartée de sa position d'équilibre (qui est le fond de la coupelle), la bille oscille autour de cette position, sans s'éloigner davantage : la composante tangentielle de la force de gravité ramène constamment la bille vers sa position d'équilibre.
Models of neural computationModels of neural computation are attempts to elucidate, in an abstract and mathematical fashion, the core principles that underlie information processing in biological nervous systems, or functional components thereof. This article aims to provide an overview of the most definitive models of neuro-biological computation as well as the tools commonly used to construct and analyze them.
Squall lineA squall line, or more accurately a quasi-linear convective system (QLCS), is a line of thunderstorms, often forming along or ahead of a cold front. In the early 20th century, the term was used as a synonym for cold front (which often are accompanied by abrupt and gusty wind shifts). Linear thunderstorm structures often contain heavy precipitation, hail, frequent lightning, strong straight-line winds, and occasionally tornadoes or waterspouts. Particularly strong straight-line winds can occur where the linear structure forms into the shape of a bow echo.
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.
Modèle de KuramotoLe modèle de Kuramoto, proposé pour la première fois par Yoshiki Kuramoto (蔵本 由紀 Kuramoto Yoshiki), est un modèle mathématique utilisé pour décrire la synchronisation au sein des systèmes complexes. Plus précisément, il s'agit d'un modèle pour le comportement d'un grand nombre d'oscillateurs couplés. Sa formulation a été motivée par le comportement des oscillateurs dans les systèmes chimiques et biologiques, et il a trouvé de nombreuses applications dans les neurosciences ou les oscillations dynamiques de la propagation d'une flamme par exemple.
Neuronethumb|537x537px|Schéma complet d’un neurone. Un neurone, ou une cellule nerveuse, est une cellule excitable constituant l'unité fonctionnelle de la base du système nerveux. Les neurones assurent la transmission d'un signal bioélectrique appelé influx nerveux. Ils ont deux propriétés physiologiques : l'excitabilité, c'est-à-dire la capacité de répondre aux stimulations et de convertir celles-ci en impulsions nerveuses, et la conductivité, c'est-à-dire la capacité de transmettre les impulsions.
Potentiel d'actionvignette|Le déplacement d'un potentiel d'action le long d'un axone, modifie la polarité de la membrane cellulaire. Les canaux ioniques sodium Na+ et potassium K+ voltage-dépendants s'ouvrent puis se ferment quand la membrane atteint le potentiel seuil, en réponse à un signal en provenance d'un autre neurone. À l'initiation du potentiel d'action, le canal Na+ s'ouvre et le Na+ extracellulaire rentre dans l'axone, provoquant une dépolarisation. Ensuite la repolarisation se produit lorsque le canal K+ s'ouvre et le K+ intracellulaire sort de l'axone.
NeurotransmissionNeurotransmission (Latin: transmissio "passage, crossing" from transmittere "send, let through") is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron (the presynaptic neuron), and bind to and react with the receptors on the dendrites of another neuron (the postsynaptic neuron) a short distance away. A similar process occurs in retrograde neurotransmission, where the dendrites of the postsynaptic neuron release retrograde neurotransmitters (e.g.
Marginal stabilityIn the theory of dynamical systems and control theory, a linear time-invariant system is marginally stable if it is neither asymptotically stable nor unstable. Roughly speaking, a system is stable if it always returns to and stays near a particular state (called the steady state), and is unstable if it goes farther and farther away from any state, without being bounded. A marginal system, sometimes referred to as having neutral stability, is between these two types: when displaced, it does not return to near a common steady state, nor does it go away from where it started without limit.
Synapsethumb|400px|Synapse entre deux neurones. La synapse (du grec , « contact, point de jonction », dérivé de , « joindre, connecter ») est une zone de contact fonctionnelle qui s'établit entre deux neurones, ou entre un neurone et une autre cellule (cellules musculaires, récepteurs sensoriels...). Elle assure la conversion d'un potentiel d'action déclenché dans le neurone présynaptique en un signal dans la cellule postsynaptique. On estime, pour certains types cellulaires (par exemple cellule pyramidale, cellule de Purkinje.