Entropie de ShannonEn théorie de l'information, l'entropie de Shannon, ou plus simplement entropie, est une fonction mathématique qui, intuitivement, correspond à la quantité d'information contenue ou délivrée par une source d'information. Cette source peut être un texte écrit dans une langue donnée, un signal électrique ou encore un fichier informatique quelconque (suite d'octets). Elle a été introduite par Claude Shannon. Du point de vue d'un récepteur, plus la source émet d'informations différentes, plus l'entropie (ou incertitude sur ce que la source émet) est grande.
Distance de HammingLa distance de Hamming est une notion mathématique, définie par Richard Hamming, et utilisée en informatique, en traitement du signal et dans les télécommunications. Elle joue un rôle important en théorie algébrique des codes correcteurs. Elle permet de quantifier la différence entre deux séquences de symboles. C'est une distance au sens mathématique du terme. À deux suites de symboles de même longueur, elle associe le nombre de positions où les deux suites diffèrent.
Canal binaire symétriqueAlice veut transmettre un message à Bob. Un canal binaire symétrique est un canal discret où Alice transmet une suite d’éléments de l'ensemble et où la probabilité d'erreur dans la transmission d'un symbole est de , pour 0 et pour 1 (d'où la symétrie). Ce canal est sans mémoire, c'est-à-dire qu'aucune archive des messages n'est conservée. En communication, un problème classique est d'envoyer de l'information d'une source à une destination via un canal de communication, en présence de bruit.
Entropy power inequalityIn information theory, the entropy power inequality (EPI) is a result that relates to so-called "entropy power" of random variables. It shows that the entropy power of suitably well-behaved random variables is a superadditive function. The entropy power inequality was proved in 1948 by Claude Shannon in his seminal paper "A Mathematical Theory of Communication". Shannon also provided a sufficient condition for equality to hold; Stam (1959) showed that the condition is in fact necessary.
Inégalité de Gibbsvignette|Willard Gibbs. En théorie de l'information, l'inégalité de Gibbs, nommée en l'honneur de Willard illard Gibbs.Gibbs, porte sur l'entropie d'une distribution de probabilités. Elle sert à prouver de nombreux résultats en théorie de l'information. Soient deux distributions de probabilités et , alors Le cas d'égalité se produit si et seulement si pour tout . D'après l'inégalité de Jensen, puisque le logarithme est concave, Cela équivaut à et montre donc l'inégalité.
Entropie de RényiL'entropie de Rényi, due à Alfréd Rényi, est une fonction mathématique qui correspond à la quantité d'information contenue dans la probabilité de collision d'une variable aléatoire. Étant donnés une variable aléatoire discrète à valeurs possibles , ainsi qu'un paramètre réel strictement positif et différent de 1, l' entropie de Rényi d'ordre de est définie par la formule : L'entropie de Rényi généralise d'autres acceptions de la notion d'entropie, qui correspondent chacune à des valeurs particulières de .
Hamming spaceIn statistics and coding theory, a Hamming space (named after American mathematician Richard Hamming) is usually the set of all binary strings of length N. It is used in the theory of coding signals and transmission. More generally, a Hamming space can be defined over any alphabet (set) Q as the set of words of a fixed length N with letters from Q. If Q is a finite field, then a Hamming space over Q is an N-dimensional vector space over Q. In the typical, binary case, the field is thus GF(2) (also denoted by Z2).
Lee distanceIn coding theory, the Lee distance is a distance between two strings and of equal length n over the q-ary alphabet {0, 1, ..., q − 1} of size q ≥ 2. It is a metric defined as If q = 2 or q = 3 the Lee distance coincides with the Hamming distance, because both distances are 0 for two single equal symbols and 1 for two single non-equal symbols. For q > 3 this is not the case anymore; the Lee distance between single letters can become bigger than 1. However, there exists a Gray isometry (weight-preserving bijection) between with the Lee weight and with the Hamming weight.
Block codeIn coding theory, block codes are a large and important family of error-correcting codes that encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of practical applications. The abstract definition of block codes is conceptually useful because it allows coding theorists, mathematicians, and computer scientists to study the limitations of all block codes in a unified way.
Code linéaireEn mathématiques, plus précisément en théorie des codes, un code linéaire est un code correcteur ayant une certaine propriété de linéarité. Plus précisément, un tel code est structuré comme un sous-espace vectoriel d'un espace vectoriel de dimension finie sur un corps fini. L'espace vectoriel fini utilisé est souvent F2n le terme usuel est alors celui de code linéaire binaire. Il est décrit par trois paramètres [n, k, δ] . n décrit la dimension de l'espace qui le contient. Cette grandeur est appelée longueur du code.