Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Quantification of short-echo time proton magnetic resonance spectroscopy results in >18 metabolite concentrations (neurochemical profile). Their quantification accuracy depends on the assessment of the contribution of macromolecule (MM) resonances, previously experimentally achieved by exploiting the several fold difference in T-1. To minimize effects of hetero-geneities in metabolites T-1, the aim of the study was to assess MM signal contributions by combining inversion recovery (IR) and diffusion-weighted proton spectroscopy at high-magnetic field (14.1 T) and short echo time (=8 msec) in the rat brain. IR combined with diffusion weighting experiments (with delta/Delta = 1.5/200 msec and b-value = 11.8 msec/mu m(2)) showed that the metabolite nulled spectrum (inversion time = 740 msec) was affected by residuals attributed to creatine, inositol, taurine, choline, N-acetylaspartate as well as glutamine and glutamate. While the metabolite residuals were significantly attenuated by 50%, the MM signals were almost not affected (
Marinella Mazzanti, Sandrine Gerber, Anne-Sophie Chauvin, Katarzyna Pierzchala, Ileana Ozana Jelescu, Jérémy Vuilleumier, Raphaël Jovita De Matos, Laura Camille Louise Nicolle, Adrian Stefan Gheata, Dario Diviani, Luigi Bonacina, Fiorella Lucarini