Diffusion RamanLa diffusion Raman, ou effet Raman, est un phénomène optique découvert indépendamment en 1928 par les physiciens Chandrashekhara Venkata Râman et Leonid Mandelstam. Cet effet consiste en la diffusion inélastique d'un photon, c'est-à-dire le phénomène physique par lequel un milieu peut modifier légèrement la fréquence de la lumière qui y circule. Ce décalage en fréquence correspond à un échange d'énergie entre le rayon lumineux et le milieu. Cet effet physique fut prédit par Adolf Smekal en 1923.
Spectroscopie RamanLa spectroscopie Raman (ou spectrométrie Raman) et la microspectroscopie Raman sont des méthodes non destructives d'observation et de caractérisation de la composition moléculaire et de la structure externe d'un matériau, qui exploite le phénomène physique selon lequel un milieu modifie légèrement la fréquence de la lumière y circulant. Ce décalage en fréquence dit l'effet Raman correspond à un échange d'énergie entre le rayon lumineux et le milieu, et donne des informations sur le substrat lui-même.
Diffusion des ondesLa diffusion est le phénomène par lequel un rayonnement, comme la lumière, le son ou un faisceau de particules, est dévié dans diverses directions par une interaction avec d'autres objets. La diffusion peut être isotrope, c'est-à-dire répartie uniformément dans toutes les directions, ou anisotrope. En particulier, la fraction de l'onde incidente qui est retournée dans la direction d'où elle provient est appelée rétrodiffusion (backscatter en anglais). La diffusion peut s'effectuer avec ou sans variation de fréquence.
AntiferromagnétismeL'antiferromagnétisme est une propriété de certains milieux magnétiques prédite par Louis Néelen 1936. Contrairement aux matériaux ferromagnétiques, dans les matériaux antiferromagnétiques, l’interaction d’échange entre les atomes voisins favorise un alignement antiparallèle des moments magnétiques atomiques. Dans l'état fondamental, les moments magnétiques moyens sur les sous-réseaux distincts peuvent être non-nuls mais se compenser à l'échelle macroscopique. L'aimantation totale du matériau est alors nulle.
Diffusion RayleighLa diffusion Rayleigh est un mode de diffusion des ondes, par exemple électromagnétiques ou sonores. Elle opère lorsque la longueur d'onde est beaucoup plus grande que la taille des particules diffusantes. On parle de diffusion élastique, car cela se fait sans variation d'énergie, autrement dit l'onde conserve la même longueur d'onde. Elle est nommée d'après John William Strutt Rayleigh, qui en a fait la découverte.
Induction électriqueEn électromagnétisme, l’induction électrique, notée , représente en quelque sorte la densité de charge par unité d'aire (en ) ressentie en un certain point : par exemple, une sphère de rayon entourant une charge subit à cause d'elle en chacun de ses points un certain champ électrique, identique à celui qu'engendrerait la même charge uniformément répartie sur l'aire de la sphère. La densité de charge surfacique ainsi obtenue est alors l'intensité de l'induction électrique.
Elliptical polarizationIn electrodynamics, elliptical polarization is the polarization of electromagnetic radiation such that the tip of the electric field vector describes an ellipse in any fixed plane intersecting, and normal to, the direction of propagation. An elliptically polarized wave may be resolved into two linearly polarized waves in phase quadrature, with their polarization planes at right angles to each other. Since the electric field can rotate clockwise or counterclockwise as it propagates, elliptically polarized waves exhibit chirality.
Résonance magnétique nucléairevignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation.
FerroélectricitéOn appelle ferroélectricité la propriété selon laquelle un matériau possède une polarisation électrique à l'état spontané, polarisation qui peut être renversée par l'application d'un champ électrique extérieur. La signature d'un matériau ferroélectrique est le cycle d'hystérésis de la polarisation en fonction du champ électrique appliqué. Le préfixe ferro- fut emprunté au ferromagnétisme par analogie.
MagnétismeLe magnétisme représente un ensemble de phénomènes physiques dans lesquels les objets exercent des forces attractives ou répulsives sur d'autres matériaux. Les courants électriques et les moments magnétiques des particules élémentaires fondamentales sont à l’origine du champ magnétique qui engendre ces forces. Tous les matériaux sont influencés, de manière plus ou moins complexe, par la présence d'un champ magnétique, et l’état magnétique d'un matériau dépend de sa température (et d'autres variables telles que la pression et le champ magnétique extérieur) de sorte qu'un matériau peut présenter différentes formes de magnétisme selon sa température.