Maximal symmetrization and reduction of fields: Application to wave functions in solid-state nanostructures
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Background: The increasingly common applications of machine-learning schemes to atomic-scale simulations have triggered efforts to better understand the mathematical properties of the mapping between the Cartesian coordinates of the atoms and the variety o ...
We derive an upper bound on the reliability function of mismatched decoding for zero-rate codes. The bound is based on a result by Komlos that shows the existence of a subcode with certain symmetry properties. The bound is shown to coincide with the expurg ...
A specific family of spanwise-localised invariant solutions of plane Couette flow exhibits homoclinic snaking, a process by which spatially localised invariant solutions of a nonlinear partial differential equation smoothly grow additional structure at the ...
Physically motivated and mathematically robust atom-centered representations of molecular structures are key to the success of modern atomistic machine learning. They lie at the foundation of a wide range of methods to predict the properties of both materi ...
The Stepped Pressure Equilibrium Code (SPEC) (Hudson et al 2012 Phys. Plasmas 19 112502) has been successful in the construction of equilibria in 3D configurations that contain a mixture of flux surfaces, islands and chaotic magnetic field lines. In this m ...
This thesis explores the application of semiclassical methods in the study of states with large quantum numbers for theories invariant under internal symmetries.
In the first part of the thesis, we study zero-temperature superfluids. These provide a gener ...
Symmetry and topology are fundamental properties of nature. Mathematics provides us with a general framework to understand these concepts. On one side, symmetry describes the invariance properties of an object for specific transformations. On the other sid ...
In this paper, we verify the large scale structure consistency relations using N-body simulations, including modes in the highly nonlinear regime. These relations (pointed out by Kehagias & Riotto and Peloso & Pietroni) follow from the symmetry of the dyna ...
We consider the phase diagram of the most general SU(4)-symmetric two-site Hamiltonian for a system of two fermions per site (i.e., self-conjugate 6 representation) on the square lattice. It is known that this model hosts magnetic phases breaking SU(4) sym ...
Using the Matrix Product State framework, we generalize the Affleck-Kennedy-Lieb-Tasaki (AKLT) construction to one-dimensional spin liquids with global color SU(N) symmetry, finite correlation lengths, and edge states that can belong to any self-conjugate ...