Stable (théorie des graphes)thumb|280px|L'ensemble des sommets en bleu dans ce graphe est un stable maximal du graphe. En théorie des graphes, un stable – appelé aussi ensemble indépendant ou independent set en anglais – est un ensemble de sommets deux à deux non adjacents. La taille d'un stable est égale au nombre de sommets qu'il contient. La taille maximum d'un stable d'un graphe, noté I(G), est un invariant du graphe. Il peut être relié à d'autres invariants, par exemple à la taille de l'ensemble dominant maximum, noté dom(G).
Coloration de graphethumb|Une coloration du graphe de Petersen avec 3 couleurs. En théorie des graphes, la coloration de graphe consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleur différente. On cherche souvent à utiliser le nombre minimal de couleurs, appelé nombre chromatique. La coloration fractionnaire consiste à chercher non plus une mais plusieurs couleurs par sommet et en associant des coûts à chacune.
Sommet (théorie des graphes)vignette|Dans ce graphe, les sommets 4 et 5 sont voisins alors que les sommets 3 et 5 sont indépendants. Le degré du sommet 4 est égal à 3. Le sommet 6 est une feuille. En théorie des graphes, un sommet, aussi appelé nœud et plus rarement point, est l'unité fondamentale d'un graphe. Deux sommets sont voisins s'ils sont reliés par une arête. Deux sommets sont indépendants s'ils ne sont pas voisins. alt=A small example network with 8 vertices and 10 edges.|vignette|Réseau de huit sommets (dont un isolé) et 10 arêtes.
Graph labelingIn the mathematical discipline of graph theory, a graph labelling is the assignment of labels, traditionally represented by integers, to edges and/or vertices of a graph. Formally, given a graph G = (V, E), a vertex labelling is a function of V to a set of labels; a graph with such a function defined is called a vertex-labeled graph. Likewise, an edge labelling is a function of E to a set of labels. In this case, the graph is called an edge-labeled graph. When the edge labels are members of an ordered set (e.
Tri topologiqueEn théorie des graphes, et plus spécialement en algorithmique des graphes, un tri topologique d'un graphe acyclique orienté (ou dag, de l'anglais directed acyclic graph) est un ordre total sur l'ensemble des sommets, dans lequel s précède t pour tout arc d'un sommet s à un sommet t. En d'autres termes, un tri topologique est une extension linéaire de l'ordre partiel sur les sommets déterminés par les arcs. Soit un graphe orienté avec et . Un ordre topologique sur ce graphe peut donner par exemple la succession des sommets 7, 1, 2, 9, 8, 4, 3, 5, 6.
Edge coverIn graph theory, an edge cover of a graph is a set of edges such that every vertex of the graph is incident to at least one edge of the set. In computer science, the minimum edge cover problem is the problem of finding an edge cover of minimum size. It is an optimization problem that belongs to the class of covering problems and can be solved in polynomial time. Formally, an edge cover of a graph G is a set of edges C such that each vertex in G is incident with at least one edge in C.
Graphe parfaitEn théorie des graphes, le graphe parfait est une notion introduite par Claude Berge en 1960. Il s'agit d'un graphe pour lequel le nombre chromatique de chaque sous-graphe induit et la taille de la plus grande clique dudit sous-graphe induit sont égaux. Un graphe est 1-parfait si son nombre chromatique (noté ) est égal à la taille de sa plus grande clique (notée ) : . Dans ce cas, est parfait si et seulement si tous les sous graphes de sont 1-parfait.
Couplage (théorie des graphes)En théorie des graphes, un couplage ou appariement (en anglais matching) d'un graphe est un ensemble d'arêtes de ce graphe qui n'ont pas de sommets en commun. Soit un graphe simple non orienté G = (S, A) (où S est l'ensemble des sommets et A l'ensemble des arêtes, qui sont certaines paires de sommets), un couplage M est un ensemble d'arêtes deux à deux non adjacentes. C'est-à-dire que M est une partie de l'ensemble A des arêtes telle que Un couplage maximum est un couplage contenant le plus grand nombre possible d'arêtes.
Isthme (théorie des graphes)In graph theory, a bridge, isthmus, cut-edge, or cut arc is an edge of a graph whose deletion increases the graph's number of connected components. Equivalently, an edge is a bridge if and only if it is not contained in any cycle. For a connected graph, a bridge can uniquely determine a cut. A graph is said to be bridgeless or isthmus-free if it contains no bridges. This type of bridge should be distinguished from an unrelated meaning of "bridge" in graph theory, a subgraph separated from the rest of the graph by a specified subset of vertices; see bridge.
Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.