Statistical model validationIn statistics, model validation is the task of evaluating whether a chosen statistical model is appropriate or not. Oftentimes in statistical inference, inferences from models that appear to fit their data may be flukes, resulting in a misunderstanding by researchers of the actual relevance of their model. To combat this, model validation is used to test whether a statistical model can hold up to permutations in the data.
Algorithme de DijkstraEn théorie des graphes, l'algorithme de Dijkstra (prononcé ) sert à résoudre le problème du plus court chemin. Il permet, par exemple, de déterminer un plus court chemin pour se rendre d'une ville à une autre connaissant le réseau routier d'une région. Plus précisément, il calcule des plus courts chemins à partir d'une source vers tous les autres sommets dans un graphe orienté pondéré par des réels positifs. On peut aussi l'utiliser pour calculer un plus court chemin entre un sommet de départ et un sommet d'arrivée.
Labeled dataLabeled data is a group of samples that have been tagged with one or more labels. Labeling typically takes a set of unlabeled data and augments each piece of it with informative tags. For example, a data label might indicate whether a photo contains a horse or a cow, which words were uttered in an audio recording, what type of action is being performed in a video, what the topic of a news article is, what the overall sentiment of a tweet is, or whether a dot in an X-ray is a tumor.
Regression validationIn statistics, regression validation is the process of deciding whether the numerical results quantifying hypothesized relationships between variables, obtained from regression analysis, are acceptable as descriptions of the data. The validation process can involve analyzing the goodness of fit of the regression, analyzing whether the regression residuals are random, and checking whether the model's predictive performance deteriorates substantially when applied to data that were not used in model estimation.
Astuce du noyauEn apprentissage automatique, l'astuce du noyau, ou kernel trick en anglais, est une méthode qui permet d'utiliser un classifieur linéaire pour résoudre un problème non linéaire. L'idée est de transformer l'espace de représentation des données d'entrées en un espace de plus grande dimension, où un classifieur linéaire peut être utilisé et obtenir de bonnes performances. La discrimination linéaire dans l'espace de grande dimension (appelé aussi espace de redescription) est équivalente à une discrimination non linéaire dans l'espace d'origine.
Noyau polynomialEn apprentissage automatique, le noyau polynomial est une fonction noyau couramment utilisée avec les machines à vecteurs de support (SVMs) et d'autres modèles à noyaux. Il représente la similarité des vecteurs (échantillons d'apprentissage) dans un espace de degré polynomial plus grand que celui des variables d'origine, ce qui permet un apprentissage de modèles non-linéaires. Intuitivement, le noyau polynomial ne tient pas compte uniquement des propriétés des échantillons d'entrée afin de déterminer leur similitude, mais aussi des combinaisons de ceux-ci.
HyperparamètreDans l'apprentissage automatique, un hyperparamètre est un paramètre dont la valeur est utilisée pour contrôler le processus d'apprentissage. En revanche, les valeurs des autres paramètres (généralement la pondération de nœuds) sont obtenues par apprentissage. Les hyperparamètres peuvent être classifiés comme étant des hyperparamètres de modèle, qui ne peuvent pas être déduits en ajustant la machine à l'ensemble d'entraînement parce qu'ils s'appliquent à la tâche de la sélection du modèle, ou des hyperparamètres d'algorithmes, qui en principe n'ont aucune influence sur la performance du modèle mais affectent la rapidité et la qualité du processus d'apprentissage.
Ray tracingvignette|upright=1.5|Exemple d' montrant la réfraction dans cinq milieux différents : dans l'air, dans le liquide bleu, dans le liquide rouge, dans le verre et dans le tube de plastique (les images sont déformées par le changement d'indice optique). Le lancer de rayons, ou lancer de rayon, également appelé ray tracing, est une technique de calcul d'optique par ordinateur, utilisée pour le rendu en ou pour des études de systèmes optiques.
Decision boundaryNOTOC In a statistical-classification problem with two classes, a decision boundary or decision surface is a hypersurface that partitions the underlying vector space into two sets, one for each class. The classifier will classify all the points on one side of the decision boundary as belonging to one class and all those on the other side as belonging to the other class. A decision boundary is the region of a problem space in which the output label of a classifier is ambiguous.
Algorithme du gradient stochastiqueL'algorithme du gradient stochastique est une méthode de descente de gradient (itérative) utilisée pour la minimisation d'une fonction objectif qui est écrite comme une somme de fonctions différentiables. À la fois l'estimation statistique et l'apprentissage automatique s'intéressent au problème de la minimisation d'une fonction objectif qui a la forme d'une somme : où le paramètre qui minimise doit être estimé. Chacune des fonctions est généralement associée avec la -ème observation de l'ensemble des données (utilisées pour l'apprentissage).