Scale-invariant feature transform[[Fichier:Matching of two images using the SIFT method.jpg|thumb|right|alt=Exemple de mise en correspondance de deux images par la méthode SIFT : des lignes vertes relient entre eux les descripteurs communs à un tableau et une photo de ce même tableau, de moindre qualité, ayant subi des transformations. |Exemple de résultat de la comparaison de deux images par la méthode SIFT (Fantasia ou Jeu de la poudre, devant la porte d’entrée de la ville de Méquinez, par Eugène Delacroix, 1832).
Feature (machine learning)In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a phenomenon. Choosing informative, discriminating and independent features is a crucial element of effective algorithms in pattern recognition, classification and regression. Features are usually numeric, but structural features such as strings and graphs are used in syntactic pattern recognition. The concept of "feature" is related to that of explanatory variable used in statistical techniques such as linear regression.
Image cléUne image clé, est une image, créée dans le monde du dessin animé, représentant les extrémités d'un mouvement, et servant de référence à l'intervalliste, pour créer les images intermédiaires de l'animation. L'image clé et parfois également écrit image-clé, et peut être appelé extrême ou plus rarement cellulo clé, car il est dessiné, à l'étape du crayonné sur papier, avant la mise en place de l'image encrée sur celluloïd (couramment appelé cellulo).
SaillanceLa saillance (de l'anglais salience, construit sur salient, du français saillant, lui-même du latin saliens, « qui saute ») d'une chose quelconque est le fait qu'elle attire l'attention ; plus précisément, la mesure dans laquelle elle retient l'attention par rapport aux autres choses présentes dans son environnement (y compris des choses similaires). Par exemple, un mot peut être mieux perçu que d'autres dans un message (saillance linguistique).
Modèle de contour actifUn modèle de contour actif, souvent nommé snake (« serpent » en anglais) dans la littérature, est une structure dynamique utilisée en et en vision artificielle. Ils ont été introduits de manière formelle par Kass et Witkin en 1987. Plusieurs approches sont possibles et permettent de résoudre le problème de la et de la détection de contour en utilisant un modèle de courbe déformable qui épouse la forme des objets. Un modèle de contour actif est formé d'une série de points mobiles et répartis sur une courbe en deux dimensions.
Segmentation d'imageLa segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
Méthode d'OtsuEn vision par ordinateur et , la méthode d'Otsu est utilisée pour effectuer un automatique à partir de la forme de l', ou la réduction d'une image à niveaux de gris en une image binaire. L'algorithme suppose alors que l'image à binariser ne contient que deux classes de pixels, (c'est-à-dire le premier plan et l'arrière-plan) puis calcule le seuil optimal qui sépare ces deux classes afin que leur variance intra-classe soit minimale. L'extension de la méthode originale pour faire du seuillage à plusieurs niveaux est appelée Multi Otsu method.
Cortex visuelLe occupe le lobe occipital du cerveau et est chargé de traiter les informations visuelles. Le cortex visuel couvre le lobe occipital, sur les faces latérales et internes, et empiète sur le lobe pariétal et le lobe temporal. L'étude du cortex visuel en neurosciences a permis de le découper en une multitude de sous-régions fonctionnelles (V1, V2, V3, V4, MT) qui traitent chacune ou collectivement des multiples propriétés des informations provenant des voies visuelles (formes, couleurs, mouvements).
Emotion recognitionEmotion recognition is the process of identifying human emotion. People vary widely in their accuracy at recognizing the emotions of others. Use of technology to help people with emotion recognition is a relatively nascent research area. Generally, the technology works best if it uses multiple modalities in context. To date, the most work has been conducted on automating the recognition of facial expressions from video, spoken expressions from audio, written expressions from text, and physiology as measured by wearables.
Détection d'objetthumb|Détection de visage avec la méthode de Viola et Jones. En vision par ordinateur on désigne par détection d'objet (ou classification d'objet) une méthode permettant de détecter la présence d'une instance (reconnaissance d'objet) ou d'une classe d'objets dans une . Une attention particulière est portée à la détection de visage et la détection de personne. Ces méthodes font souvent appel à l'apprentissage supervisé et ont des applications dans de multiples domaines, tels la ou la vidéo surveillance.