Degré (théorie des graphes)thumb|Un graphe non orienté où on a indiqué le degré de chaque sommet sur ce sommet. Dans ce graphe, le degré maximal est et le degré minimal est . En mathématiques, et plus particulièrement en théorie des graphes, le degré (ou valence) d'un sommet d'un graphe est le nombre de liens (arêtes ou arcs) reliant ce sommet, avec les boucles comptées deux fois. Le degré d'un sommet est noté . Dans le cas d'un graphe orienté, on parle aussi du degré entrant d'un sommet , c'est-à-dire le nombre d'arcs dirigés vers le sommet , et du degré sortant de ce sommet , c'est-à-dire le nombre d'arcs sortant de .
Graphe arête-transitifvignette|Graphe de Gray, arête-transitif et régulier mais pas sommet-transitif. En théorie des graphes, un graphe non-orienté est arête-transitif si pour tout couple d'arêtes, il existe un automorphisme de graphe envoyant la première arête sur la seconde. Un graphe non-orienté est arête-transitif si pour tout couple d'arêtes, il existe un automorphisme de graphe envoyant la première arête sur la seconde. En d'autres termes, un graphe est arête-transitif si son groupe d'automorphismes agit transitivement sur l'ensemble de ses arêtes.
Hereditarily finite setIn mathematics and set theory, hereditarily finite sets are defined as finite sets whose elements are all hereditarily finite sets. In other words, the set itself is finite, and all of its elements are finite sets, recursively all the way down to the empty set. A recursive definition of well-founded hereditarily finite sets is as follows: Base case: The empty set is a hereditarily finite set. Recursion rule: If a1,...,ak are hereditarily finite, then so is {a1,...,ak}.
Sommet (géométrie)vignette|droite|Le sommet d'un angle est le point d'intersection où se réunissent deux segments de droites. En géométrie, un sommet est un point particulier d'une figure : un sommet d'un polygone, d'un polyèdre, ou plus généralement d'un polytope, est un 0-simplexe de celui-ci ; c'est l'extrémité d'au moins une arête (par analogie, on parle aussi de sommets en théorie des graphes) ; dans un polyèdre, en chaque sommet, convergent au moins trois faces et un nombre égal d'arêtes (voir aussi le théorème de Descartes-Euler, qui relie le nombre de sommets, d'arêtes et de faces d'un polyèdre) ; le sommet d'un angle est le point d'intersection des deux côtés de cet angle ; le sommet d'un cône est le point d'intersection de toutes les génératrices de ce cône.
Biconnected componentIn graph theory, a biconnected component (sometimes known as a 2-connected component) is a maximal biconnected subgraph. Any connected graph decomposes into a tree of biconnected components called the block-cut tree of the graph. The blocks are attached to each other at shared vertices called cut vertices or separating vertices or articulation points. Specifically, a cut vertex is any vertex whose removal increases the number of connected components.
Graphe couronneEn théorie des graphes, une branche des mathématiques, un graphe couronne à 2 n sommets est un graphe non orienté comportant deux jeux de sommets ui et vi reliés par une arête de ui à vj à chaque fois que i ≠ j. Le graphe couronne à six sommets est un graphe cycle. Le graphe couronne à huit sommets est le graphe hexaédrique, celui qui décrit les sommets et les arêtes d'un cube. Le graphe couronne peut être vu comme un graphe biparti complet d'où l'on aurait retiré les arêtes formant un couplage parfait (les arêtes horizontales absentes sur la figure).
Théorème de MengerEn théorie des graphes, le théorème de Menger est à l'origine du théorème flot-max/coupe-min qui le généralise. Il fut prouvé par Karl Menger en 1927. Le théorème de Menger s'énonce ainsi : Le théorème d'Erdős-Pósa est de même nature que celui de Menger, il relie la taille maximale d'une collection de cycles disjoints à la taille minimale d'un coupe-cycles de sommets (feedback vertex set). J. A. Bondy et U.S.R. Murty, Graph Theory with Applications, libre d'accès uniquement pour l'usage personnel Menger de
Séparateur (théorie des graphes)En théorie des graphes et en informatique théorique, un séparateur d'un graphe connexe est un sous-ensemble des sommets du graphe dont la suppression rend le graphe non-connexe. Cet objet est intéressant notamment pour décomposer un graphe en des graphes plus petits et plus simples. On appelle parfois séparateur un ensemble d'arêtes dont la suppression rend le graphe non-connexe, c'est-à-dire une coupe. Le théorème de Menger relie connectivité et séparateurs minimum. thumb|upright=1.2|Un separateur du graphe grille.
Doubly connected edge listThe doubly connected edge list (DCEL), also known as half-edge data structure, is a data structure to represent an embedding of a planar graph in the plane, and polytopes in 3D. This data structure provides efficient manipulation of the topological information associated with the objects in question (vertices, edges, faces). It is used in many algorithms of computational geometry to handle polygonal subdivisions of the plane, commonly called planar straight-line graphs (PSLG).
Maille (théorie des graphes)En théorie des graphes, la maille d'un graphe est la longueur du plus court de ses cycles. Un graphe acyclique est généralement considéré comme ayant une maille infinie (ou, pour certains auteurs, une maille de −1). La maille d'un graphe est la longueur du plus court de ses cycles. Image:Petersen graph blue.svg|Le [[graphe de Petersen]] a une maille de 5 et est une cage. Image:Heawood_Graph.svg|Le [[graphe de Heawood]] a une maille de 6 et est une cage. Image:Frucht_graph.neato.