In graph theory, the girth of an undirected graph is the length of a shortest cycle contained in the graph. If the graph does not contain any cycles (that is, it is a forest), its girth is defined to be infinity.
For example, a 4-cycle (square) has girth 4. A grid has girth 4 as well, and a triangular mesh has girth 3. A graph with girth four or more is triangle-free.
Cage (graph theory)
A cubic graph (all vertices have degree three) of girth g that is as small as possible is known as a g-cage (or as a (3,g)-cage). The Petersen graph is the unique 5-cage (it is the smallest cubic graph of girth 5), the Heawood graph is the unique 6-cage, the McGee graph is the unique 7-cage and the Tutte eight cage is the unique 8-cage. There may exist multiple cages for a given girth. For instance there are three nonisomorphic 10-cages, each with 70 vertices: the Balaban 10-cage, the Harries graph and the Harries–Wong graph.
Image:Petersen1 tiny.svg|The [[Petersen graph]] has a girth of 5
Image:Heawood_Graph.svg|The [[Heawood graph]] has a girth of 6
Image:McGee graph.svg|The [[McGee graph]] has a girth of 7
Image:Tutte eight cage.svg|The [[Tutte–Coxeter graph]] (''Tutte eight cage'') has a girth of 8
For any positive integers g and χ, there exists a graph with girth at least g and chromatic number at least χ; for instance, the Grötzsch graph is triangle-free and has chromatic number 4, and repeating the Mycielskian construction used to form the Grötzsch graph produces triangle-free graphs of arbitrarily large chromatic number. Paul Erdős was the first to prove the general result, using the probabilistic method. More precisely, he showed that a random graph on n vertices, formed by choosing independently whether to include each edge with probability n(1–g)/g, has, with probability tending to 1 as n goes to infinity, at most cycles of length g or less, but has no independent set of size . Therefore, removing one vertex from each short cycle leaves a smaller graph with girth greater than g, in which each color class of a coloring must be small and which therefore requires at least k colors in any coloring.