Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper deals with the finite horizon stochastic optimal control problem with the expectation of the 1-norm as the objective function and jointly Gaussian, although not necessarily independent, disturbances. We develop an approximation strategy that solves the problem in a certain class of nonlinear feedback policies, while ensuring satisfaction of hard input constraints. A bound on suboptimality of the proposed strategy in the class of aforementioned nonlinear feedback policies is given as well as a simple proof of mean-square stability of a receding horizon implementation provided that the system matrix is Schur stable.
Daniel Kressner, Alice Cortinovis
,
, ,