Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper introduces a novel method for data-driven robust control of nonlinear systems based on the Koopman operator, utilizing Integral Quadratic Constraints (IQCs). The Koopman operator theory facilitates the linear representation of nonlinear system dynamics in a higher-dimensional space. Data-driven Koopman-based representations inherently yield only approximate models due to various factors. In addressing this, we focus on effective characterization of the modeling error, which is crucial for ensuring closed-loop guarantees. We identify non-parametric IQC multipliers to characterize the modeling error in a data-driven fashion through the solution of frequency domain (FD) linear matrix inequalities (LMIs), treating it as additive uncertainty for robust control design. These multipliers provide a convex set representation of stabilising robust controllers. We then obtain the optimal controller within this set by solving a different set of FD LMIs. Lastly, we propose an iterative approach alternating between IQC multiplier identification and robust controller synthesis, ensuring monotonic convergence of a robust performance index.
Aude Billard, Bernardo Fichera
Alireza Karimi, Mert Eyuboglu, Nathan Russell Powell