Annotation sémantiqueL'annotation sémantique est l'opération consistant à relier le contenu d'un texte à des entités dans une ontologie. Par exemple, pour la phrase «Paris est la capitale de la France.», l'annotation correcte de Paris serait Paris et non Paris Hilton. L'annotation sémantique est une variante plus détaillée mais moins exacte de la méthode des entitiés nommées, car ces dernières décrivent seulement la catégorie de l'entité (Paris est une ville, sans la relier à la bonne page Wikipédia).
Recherche d'informationLa recherche d'information (RI) est le domaine qui étudie la manière de retrouver des informations dans un corpus. Celui-ci est composé de documents d'une ou plusieurs bases de données, qui sont décrits par un contenu ou les métadonnées associées. Les bases de données peuvent être relationnelles ou non structurées, telles celles mises en réseau par des liens hypertexte comme dans le World Wide Web, l'internet et les intranets. Le contenu des documents peut être du texte, des sons, des images ou des données.
Reconnaissance d'entités nomméesLa reconnaissance d'entités nommées est une sous-tâche de l'activité d'extraction d'information dans des corpus documentaires. Elle consiste à rechercher des objets textuels (c'est-à-dire un mot, ou un groupe de mots) catégorisables dans des classes telles que noms de personnes, noms d'organisations ou d'entreprises, noms de lieux, quantités, distances, valeurs, dates, etc. À titre d'exemple, on pourrait donner le texte qui suit, étiqueté par un système de reconnaissance d'entités nommées utilisé lors de la campagne d'évaluation MUC: Henri a acheté 300 actions de la société AMD en 2006 Henri a acheté 300 actions de la société AMD en 2006.
Document retrievalDocument retrieval is defined as the matching of some stated user query against a set of free-text records. These records could be any type of mainly unstructured text, such as newspaper articles, real estate records or paragraphs in a manual. User queries can range from multi-sentence full descriptions of an information need to a few words. Document retrieval is sometimes referred to as, or as a branch of, text retrieval. Text retrieval is a branch of information retrieval where the information is stored primarily in the form of text.
Informations non structuréesLes informations non structurées ou données non structurées sont des données représentées ou stockées sans format prédéfini. Ces informations sont toujours destinées à des humains. Elles sont typiquement constituées de documents textes ou multimédias, mais peuvent également contenir des dates, des nombres et des faits. Cette absence de format entraîne des irrégularités et des ambiguïtés qui peuvent rendre difficile la compréhension des données, contrairement au cas des données stockées dans des tableurs ou des bases de données par exemple, qui sont des informations structurées.
Fouille de textesLa fouille de textes ou « l'extraction de connaissances » dans les textes est une spécialisation de la fouille de données et fait partie du domaine de l'intelligence artificielle. Cette technique est souvent désignée sous l'anglicisme text mining. Elle désigne un ensemble de traitements informatiques consistant à extraire des connaissances selon un critère de nouveauté ou de similarité dans des textes produits par des humains pour des humains.
Information extractionInformation extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-structured machine-readable documents and other electronically represented sources. In most of the cases this activity concerns processing human language texts by means of natural language processing (NLP). Recent activities in multimedia document processing like automatic annotation and content extraction out of images/audio/video/documents could be seen as information extraction Due to the difficulty of the problem, current approaches to IE (as of 2010) focus on narrowly restricted domains.
Classification et catégorisation de documentsLa classification et catégorisation de documents est l'activité du traitement automatique des langues naturelles qui consiste à classer de façon automatique des ressources documentaires, généralement en provenance d'un corpus. Cette classification peut prendre une infinité de formes. On citera ainsi la classification par genre, par thème, ou encore par opinion. La tâche de classification est réalisée avec des algorithmes spécifiques, mis en œuvre par des systèmes de traitement de l'information.
Systèmes de questions-réponsesUn système de questions-réponses (question answering system en anglais, ou QA system) est un système informatique permettant de répondre automatiquement à des questions posées par des humains, lors d'un échange fait en langue naturelle (comme le français). La discipline liée appartient aux domaines du traitement automatique de la langue et de la recherche d'information. Elle se démarque de l'interrogation de moteurs de recherche en cela qu'elle vise non seulement à récupérer les documents pertinents d'une collection de textes, mais également à formuler une réponse très ciblée à la question posée.
Concept searchA concept search (or conceptual search) is an automated information retrieval method that is used to search electronically stored unstructured text (for example, digital archives, email, scientific literature, etc.) for information that is conceptually similar to the information provided in a search query. In other words, the ideas expressed in the information retrieved in response to a concept search query are relevant to the ideas contained in the text of the query.