HydrogénationL'hydrogénation est une réaction chimique qui consiste en l'addition d'une molécule de dihydrogène (H2) à un autre composé. Cette réaction est habituellement employée pour réduire ou saturer des composés organiques. Elle nécessite en général une catalyse, les réactions sans catalyse nécessitant de très hautes températures. On appelle la réaction inverse de l'hydrogénation la déshydrogénation. Les réactions où des liaisons sont brisées tandis que de l'hydrogène est additionné sont appelées hydrogénolyses (cette réaction pouvait s'appliquer aux liaisons carbone-carbone comme aux liaisons carbone-hétéroatome — O, N, X).
Asymmetric hydrogenationAsymmetric hydrogenation is a chemical reaction that adds two atoms of hydrogen to a target (substrate) molecule with three-dimensional spatial selectivity. Critically, this selectivity does not come from the target molecule itself, but from other reagents or catalysts present in the reaction. This allows spatial information (what chemists refer to as chirality) to transfer from one molecule to the target, forming the product as a single enantiomer.
Catalysevignette|Intérieur du musée de la catalyse à Widnes en Angleterre. En chimie, la catalyse (du grec ancien : , « détacher ») se réfère à l'accélération ou la réorientation de la cinétique de réaction au moyen d'un catalyseur, et dans certains cas à la sélectivité pour diriger la réaction dans un sens privilégié (réaction concurrente, production d'un produit plutôt qu'un autre). Le catalyseur est utilisé en quantité beaucoup plus faible que les produits réactifs. Il n'apparait pas en général dans le bilan de réaction, donc pas dans son équation globale.
Stockage de l'hydrogèneLe concept de stockage de l'hydrogène désigne toutes les formes de mise en réserve du dihydrogène en vue de sa mise à disposition ultérieure comme produit chimique ou vecteur énergétique. Plusieurs possibilités existent, qui présentent avantages et inconvénients. Sous forme de gaz, le dihydrogène est peu dense et doit être fortement comprimé. La liquéfaction du dihydrogène se réalise à très basse température. L'hydrogène solide nécessite d'être lié à d'autres composants, notamment sous la forme d'hydrure.
Hydrogénation par transfertL'hydrogénation par transfert est une technique d'hydrogénation dans laquelle la source en hydrogène n'est pas le dihydrogène, mais un autre « donneur en hydrogène ». Ces donneurs sont souvent des solvants comme l'hydrazine, le dihydronaphtalène, le dihydroanthracène, l'isopropanol, l'acide méthanoïque ou le cyclohexadiène. Cette technique est utilisée dans l'industrie et en synthèse organique du fait des inconvénients et des coûts liés à l'utilisation de H2.
Cycle catalytiquevignette|300px|Exemple de cycle catalytique : le procédé Monsanto. En chimie, un cycle catalytique est un terme désignant un mécanisme réactionnel à plusieurs étapes impliquant un catalyseur. Le cycle catalytique est la principale façon de décrire le rôle des catalyseurs en biochimie, chimie organométallique, science des matériaux Souvent, de tels cycles montrent la conversion d'un précatalyseur en catalyseur. Comme les catalyseurs sont régénérés, les cycles catalytiques sont habituellement écrits comme une séquence de réactions chimiques en forme de boucle.
Reformage catalytiqueLe reformage catalytique est une opération chimique servant à valoriser une fraction du pétrole (le naphta lourd) en essence. vignette|Unité de reformage catalytique vignette|Reformage catalytique continu / platformage Dans ce procédé, un catalyseur permet de déclencher les réactions chimiques. À partir d'un naphta lourd débarrassé de soufre, le produit passe à travers une série de quatre réacteurs qui transforment les alcanes saturés en alcanes insaturés en les débarrassant partiellement de leurs atomes d'hydrogène.
Reaction rateThe reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. Reaction rates can vary dramatically. For example, the oxidative rusting of iron under Earth's atmosphere is a slow reaction that can take many years, but the combustion of cellulose in a fire is a reaction that takes place in fractions of a second.
Production d'hydrogèneLa production d'hydrogène, ou plus exactement de dihydrogène, est en grande majorité réalisée par extraction chimique depuis des combustibles fossiles, principalement du méthane, du charbon et de coupes pétrolières. La production de dihydrogène par cette voie présente l'avantage d'un coût compétitif, mais l'inconvénient d'être à l'origine d'émissions de non biogénique, qui dépassent généralement dix kilogrammes de par kilogramme d'hydrogène produit.
Spectrométrie photoélectronique Xvignette|upright=1.4|Machine XPS avec un analyseur de masse (A), des lentilles électromagnétiques (B), une chambre d'ultra-vide (C), une source de rayon X (D) et une pompe à vide (E) La spectrométrie photoélectronique X, ou spectrométrie de photoélectrons induits par rayons X (en anglais, X-Ray photoelectron spectrometry : XPS) est une méthode de spectrométrie photoélectronique qui implique la mesure des spectres de photoélectrons induits par des photons de rayon X.