Publication

Design and Exploration of Low-Power Analog to Information Conversion Based on Compressed Sensing

Résumé

The long-standing analog-to-digital conversion paradigm based on Shannon/Nyquist sampling has been challenged lately, mostly in situations such as radar and communication signal processing where signal bandwidth is so large that sampling architectures constraints are simply not manageable. Compressed Sensing (CS) [1], [2], [3] is a new emerging signal acquisition/compression paradigm that offers a striking alternative to traditional signal acquisition. CS states that a signal having a sparse representation in some dictionary of waveforms can be recovered from a small number of linear projections of that signal, thus enabling efficient sensing, sampling and compression. Interestingly, by merging the sampling and compression steps, CS also removes a large part of the digital architecture and might thus considerably simplify analog-to-information (A2I) conversion devices. This so-called ”analog CS”, where compression occurs directly in the analog sensor readout electronics prior to analog-to-digial conversion, could thus be of great importance for applications where bandwidth is moderate, but computationally complex, and power resources are severely constrained. A promising example is embedded e-health monitoring devices, which must precisely operate in these conditions. Unfortunately, there are very few system wide implementations of CS including an analog front-end that could serve as reference design for these applications. In our previous work [4], we quantified and validated the potential of digital CS systems for real-time and energy-efficient electrocardiogram (ECG) compression on resource-constrained sensing platforms. In this paper, we review the state-of-the-art implementations of CS-based signal acquisition systems and perform a complete system level analysis for each implementation to highlight their strengths and weaknesses regarding implementation complexity, performance and power consumption. Then, we introduce the Spread Spectrum Random Modulator Pre-Integrator (SRMPI), which is a new design and implementation of a CS based A2I read-out system that uses spread spectrum techniques prior to random modulation in order to produce the low rate set of digital samples. Finally, we experimentally built an SRMPI prototype to compare it with state-of-the-art CS-based signal acquisition systems, focusing on critical system design parameters and constraints, and show that this new proposed architecture offers a compelling alternative, in particular for low power and computationally-constrained embedded systems.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (33)
Convertisseur numérique-analogique
Un convertisseur numérique-analogique (CNA, de N/A pour numérique vers analogique ou, en anglais, DAC, de D/A pour Digital to Analog Converter) est un composant électronique dont la fonction est de transformer une valeur numérique (codée sur plusieurs bits) en une valeur analogique proportionnelle à la valeur numérique codée. Généralement la sortie du convertisseur est une tension électrique, mais certains convertisseurs ont une sortie en courant. N/A = Fréquence / Bits Il existe plusieurs solutions pour créer un signal analogique à partir d'un système numérique.
Convertisseur analogique-numérique
vignette|Symbole normé du convertisseur analogique numérique Un convertisseur analogique-numérique (CAN, parfois convertisseur A/N, ou en anglais ADC pour Analog to Digital Converter ou plus simplement A/D) est un dispositif électronique dont la fonction est de traduire une grandeur analogique en une valeur numérique codée sur plusieurs bits. Le signal converti est généralement une tension électrique. Le résultat de la conversion s'obtient par la formule : où Q est le résultat de Conversion, Ve, la tension à convertir, n le nombre de bits du convertisseur et Vref la tension de référence de la mesure.
Échantillonnage (signal)
L'échantillonnage consiste à prélever les valeurs d'un signal à intervalles définis, généralement réguliers. Il produit une suite de valeurs discrètes nommées échantillons. L'application la plus courante de l'échantillonnage est aujourd'hui la numérisation d'un signal variant dans le temps, mais son principe est ancien. Depuis plusieurs siècles, on surveille les mouvements lents en inscrivant, périodiquement, les valeurs relevées dans un registre : ainsi des hauteurs d'eau des marées ou des rivières, de la quantité de pluie.
Afficher plus
Publications associées (68)

Architecture for integrated RF photonic downconversion of electronic signals

Tobias Kippenberg, Junqiu Liu

Electronic analog to digital converters (ADCs) are run-ning up against the well-known bit depth versus bandwidth trade off. Towards this end, radio frequency (RF) photonic-enhanced ADCs have been the subject of interest for some time. Optical frequency com ...
Optica Publishing Group2023

Unlabeled Sensing of Multi-Input FRI Signals

Taulant Koka

Shannon's sampling theorem for bandlimited signals, formulated in 1949, has become a cornerstone for modern digital communications and signal processing. The importance of sampling and reconstruction of analog signals has led to great advances in the field ...
2022

Spike-Based Sensing and Communication for Highly Energy-Efficient Sensor Edge Nodes

Mihai Adrian Ionescu, Teodor Rosca

Highly energy-efficient wireless sensor nodes are a prerequisite for a sustainable operation of the Internet of things. Therefore, classical approaches for system design based on digital signal processing are not a viable solution, but system design has to ...
IEEE2022
Afficher plus
MOOCs associés (14)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing
Digital Signal Processing is the branch of engineering that, in the space of just a few decades, has enabled unprecedented levels of interpersonal communication and of on-demand entertainment. By rewo
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Afficher plus