Géométrie complexeIn mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.
Complex analytic varietyIn mathematics, and in particular differential geometry and complex geometry, a complex analytic variety or complex analytic space is a generalization of a complex manifold which allows the presence of singularities. Complex analytic varieties are locally ringed spaces which are locally isomorphic to local model spaces, where a local model space is an open subset of the vanishing locus of a finite set of holomorphic functions. Denote the constant sheaf on a topological space with value by .
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Variété complexeLes variétés complexes ou plus généralement les sont les objets d'étude de la géométrie analytique complexe. Une variété complexe de dimension n est un espace topologique obtenu par recollement d'ouverts de Cn selon des biholomorphismes, c'est-à-dire des bijections holomorphes. Plus précisément, une variété complexe de dimension n est un espace topologique dénombrable à l'infini (c'est-à-dire localement compact et σ-compact) possédant un atlas de cartes sur Cn, tel que les applications de changement de cartes soient des biholomorphismes.
Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.
Nom de domaineUn nom de domaine (NDD en notation abrégée française ou DN pour Domain Name en anglais) est, dans le système de noms de domaine DNS, un identifiant de domaine internet. Un domaine est un ensemble d'ordinateurs reliés à Internet et possédant une caractéristique commune. Par exemple, un domaine tel que .fr est l'ensemble des ordinateurs hébergeant des activités pour des personnes ou des organisations qui se sont enregistrées auprès de l'Association française pour le nommage Internet en coopération (AFNIC) qui est le registre responsable du domaine de premier niveau .
Parallélisme (informatique)vignette|upright=1|Un des éléments de Blue Gene L cabinet, un des supercalculateurs massivement parallèles les plus rapides des années 2000. En informatique, le parallélisme consiste à mettre en œuvre des architectures d'électronique numérique permettant de traiter des informations de manière simultanée, ainsi que les algorithmes spécialisés pour celles-ci. Ces techniques ont pour but de réaliser le plus grand nombre d'opérations en un temps le plus petit possible.
Domaine de premier niveauUn domaine de premier niveau ou un domaine de tête (top-level domain, ou TLD), aussi appelé une extension, est, dans le système de noms de domaine internet, un sous-domaine de la racine. Dans un nom de domaine, le domaine de premier niveau est généralement le dernier élément du nom de domaine (exemple : dans , le domaine de premier niveau est ). vignette|Exemples de domaines de premier niveau. Le dernier point est optionnel. À l'origine, il indiquait la fin du nom de domaine. Par simplicité, l'usage courant est de ne plus l'indiquer.
Modelling biological systemsModelling biological systems is a significant task of systems biology and mathematical biology. Computational systems biology aims to develop and use efficient algorithms, data structures, visualization and communication tools with the goal of computer modelling of biological systems. It involves the use of computer simulations of biological systems, including cellular subsystems (such as the networks of metabolites and enzymes which comprise metabolism, signal transduction pathways and gene regulatory networks), to both analyze and visualize the complex connections of these cellular processes.
Traitement massivement parallèleEn informatique, le traitement massivement parallèle (en anglais, massively parallel processing ou massively parallel computing) est l'utilisation d'un grand nombre de processeurs (ou d'ordinateurs distincts) pour effectuer un ensemble de calculs coordonnés en parallèle (c'est-à-dire simultanément). Différentes approches ont été utilisées pour implanter le traitement massivement parallèle. Dans cette approche, la puissance de calcul d'un grand nombre d'ordinateurs distribués est utilisée de façon opportuniste chaque fois qu'un ordinateur est disponible.