**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Horava gravity versus thermodynamics: The black hole case

Résumé

Under broad assumptions, breaking of Lorentz invariance in gravitational theories leads to tension with unitarity because it allows for processes that apparently violate the second law of thermodynamics. The crucial ingredient of this argument is the existence of black hole solutions with the interior shielded from infinity by a causal horizon. We study how the paradox can be resolved in the healthy extension of Horava gravity. To this aim we analyze classical solutions describing large black holes in this theory with the emphasis on their causal structure. The notion of causality is subtle in this theory due to the presence of instantaneous interactions. Despite this fact, we find that within exact spherical symmetry a black hole solution contains a space-time region causally disconnected from infinity by a surface of finite area-the "universal horizon.'' We then consider small perturbations of arbitrary angular dependence in the black hole background. We argue that aspherical perturbations destabilize the universal horizon and, at the nonlinear level, turn it into a finite-area singularity. The causal structure of the region outside the singularity is trivial. If the higher-derivative terms in the equations of motion smear the singularity while preserving the trivial causal structure of the solutions, the thermodynamics paradox would be obviated. As a by-product of our analysis we prove that the black holes do not have any nonstandard long-range hair. We also comment on the relation with Einstein-aether theory, where the solutions with a universal horizon appear to be stable.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Publications associées (3)

Chargement

Chargement

Chargement

Concepts associés (24)

Covariance de Lorentz

vignette|Illustration de l'espace-temps.
En relativité restreinte, une quantité est dite covariante de Lorentz lorsque ses composantes forment une représentation du groupe de Lorentz.
Par exemple le

Théorie

Une théorie (du grec theoria, « contempler, observer, examiner ») est un ensemble cohérent, si elle prétend à la scientificité, d'explications, de notions ou d'idées sur un sujet précis, pouvant inclu

Gravité quantique

La gravité quantique est une branche de la physique théorique tentant d'unifier la mécanique quantique et la relativité générale.
Une telle théorie permettrait notamment de comprendre les phénomène

Diego Blas Temino, Sergey Sibiryakov

We construct a model of dark energy with a technically natural small contribution to cosmic acceleration, i.e. this contribution does not receive corrections from other scales in the theory. The proposed acceleration mechanism appears generically in the low-energy limit of gravity theories with violation of Lorentz invariance that contain a derivatively coupled scalar field Theta. The latter may be the Goldstone field of a broken global symmetry. The model, that we call Theta CDM, is a valid effective field theory up to a high cutoff just a few orders of magnitude below the Planck scale. Furthermore, it can be ultraviolet-completed in the context of Horava gravity. We discuss the observational predictions of the model. Even in the absence of a cosmological constant term, the expansion history of the Universe is essentially indistinguishable from that of Lambda CDM. The difference between the two theories appears at the level of cosmological perturbations. We find that in Theta CDM the matter power spectrum is enhanced at subhorizon scales compared to Lambda CDM. This property can be used to discriminate the model from Lambda CDM with current cosmological data.

2011Currently, the best theoretical description of fundamental matter and its gravitational interaction is given by the Standard Model (SM) of particle physics and Einstein's theory of General Relativity (GR). These theories contain a number of seemingly unrelated scales. While Newton's gravitational constant and the mass of the Higgs boson are parameters in the classical action, the masses of other elementary particles are due to the electroweak symmetry breaking. Yet other scales, like ΛQCD associated to the strong interaction, only appear after the quantization of the theory. We reevaluate the idea that the fundamental theory of nature may contain no fixed scales and that all observed scales could have a common origin in the spontaneous break-down of exact scale invariance. To this end, we consider a few minimal scale-invariant extensions of GR and the SM, focusing especially on their cosmological phenomenology. In the simplest considered model, scale invariance is achieved through the introduction of a dilaton field. We find that for a large class of potentials, scale invariance is spontaneously broken, leading to induced scales at the classical level. The dilaton is exactly massless and practically decouples from all SM fields. The dynamical break-down of scale invariance automatically provides a mechanism for inflation. Despite exact scale invariance, the theory generally contains a cosmological constant, or, put in other words, flat spacetime need not be a solution. We next replace standard gravity by Unimodular Gravity (UG). This results in the appearance of an arbitrary integration constant in the equations of motion, inducing a run-away potential for the dilaton. As a consequence, the dilaton can play the role of a dynamical dark-energy component. The cosmological phenomenology of the model combining scale invariance and unimodular gravity is studied in detail. We find that the equation of state of the dilaton condensate has to be very close to the one of a cosmological constant. If the spacetime symmetry group of the gravitational action is reduced from the group of all diffeomorphisms (Diff) to the subgroup of transverse diffeomorphisms (TDiff), the metric in general contains a propagating scalar degree of freedom. We show that the replacement of Diff by TDiff makes it possible to construct a scale-invariant theory of gravity and particle physics in which the dilaton appears as a part of the metric. We find the conditions under which such a theory is a viable description of particle physics and in particular reproduces the SM phenomenology. The minimal theory with scale invariance and UG is found to be a particular case of a theory with scale and TDiff invariance. Moreover, cosmological solutions in models based on scale and TDiff invariance turn out to generically be similar to the solutions of the model with UG. In usual quantum field theories, scale invariance is anomalous. This might suggest that results based on classical scale invariance are necessarily spoiled by quantum corrections. We show that this conclusion is not true. Namely, we propose a new renormalization scheme which allows to construct a class of quantum field theories that are scale-invariant to all orders of perturbation theory and where the scale symmetry is spontaneously broken. In this type of theory, all scales, including those related to dimensional transmutation, like ΛQCD, appear as a consequence of the spontaneous break-down of the scale symmetry. The proposed theories are not renormalizable. Nonetheless, they are valid effective theories below a field-dependent cut-off scale. If the scale-invariant renormalization scheme is applied to the presented minimal scale-invariant extensions of GR and the SM, the goal of having a common origin of all scales, spontaneous breaking of scale invariance, is achieved.

Solomon G Shamsuddin Osman Endlich, Alexander Monin, Francesco Riva

Space-time symmetries are a crucial ingredient of any theoretical model in physics. Unlike internal symmetries, which may or may not be gauged and/or spontaneously broken, space-time symmetries do not admit any ambiguity: they are gauged by gravity, and any conceivable physical system (other than the vacuum) is bound to break at least some of them. Motivated by this observation, we study how to couple gravity with the Goldstone fields that non-linearly realize spontaneously broken space-time symmetries. This can be done in complete generality by weakly gauging the Poincare symmetry group in the context of the coset construction. To illustrate the power of this method, we consider three kinds of physical systems coupled to gravity: superfluids, relativistic membranes embedded in a higher dimensional space, and rotating point-like objects. This last system is of particular importance as it can be used to model spinning astrophysical objects like neutron stars and black holes. Our approach provides a systematic and unambiguous parametrization of the degrees of freedom of these systems.