Trou noiralt=|vignette|Le disque d'accrétion du trou noir M87* imagé par l'en. Le trou noir lui-même est invisible, au centre de la zone noire centrale. En astrophysique, un trou noir est un objet céleste si compact que l'intensité de son champ gravitationnel empêche toute forme de matière ou de rayonnement de s'en échapper. De tels objets ne peuvent ni émettre, ni diffuser la lumière et sont donc noirs, ce qui en astronomie revient à dire qu'ils sont optiquement invisibles.
Trou noir de KerrEn astrophysique, un trou noir de Kerr, ainsi désigné en l'honneur du mathématicien néozélandais Roy Kerr, est, par définition, un trou noir : de masse strictement positive : ; dont le moment cinétique n'est pas nul : , c'est-à-dire qui est en rotation axiale ; dont la charge électrique est nulle . D'après la conjecture de calvitie, proposée par John Wheeler, il est un des quatre types théoriques de trous noirs.
Micro-trou noirLes micro-trous noirs sont de minuscules trous noirs hypothétiques, également appelés trous noirs quantiques ou mini-trous noirs, pour lesquels les effets liés à la mécanique quantique jouent un rôle important. Il est possible que de tels trous noirs quantiques aient été créés dans l'environnement très dense de l'univers primordial, ou au cours de transitions de phases ultérieures : on parle dans ce cas de trous noirs primordiaux. Ils pourraient être détectés prochainement par les astrophysiciens, grâce aux particules qu'ils devraient émettre par rayonnement de Hawking.
Causal structureIn mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold. In modern physics (especially general relativity) spacetime is represented by a Lorentzian manifold. The causal relations between points in the manifold are interpreted as describing which events in spacetime can influence which other events. The causal structure of an arbitrary (possibly curved) Lorentzian manifold is made more complicated by the presence of curvature.
Deuxième principe de la thermodynamiqueLe deuxième principe de la thermodynamique (également connu sous le nom de deuxième loi de la thermodynamique ou principe de Carnot) établit l'irréversibilité des phénomènes physiques, en particulier lors des échanges thermiques. C'est un principe d'évolution qui fut énoncé pour la première fois par Sadi Carnot en 1824. Il a depuis fait l'objet de nombreuses généralisations et formulations successives par Clapeyron (1834), Clausius (1850), Lord Kelvin, Ludwig Boltzmann en 1873 et Max Planck (voir Histoire de la thermodynamique et de la mécanique statistique), tout au long du et au-delà jusqu'à nos jours.
Problème de l'horizonLe problème de l'horizon a été pendant longtemps un casse-tête de la cosmologie, dont il est aujourd'hui communément admis que la solution est offerte par le paradigme de l'inflation cosmique. Un paradoxe apparent se posait : comment rendre compatible l'observation du fond diffus cosmologique, qui indique qu'à très grande échelle l'Univers est homogène et isotrope, avec la contrainte issue de la relativité indiquant que certaines régions de l'Univers sont si éloignées qu'il semblerait qu'elles n'aient jamais pu échanger d'information depuis le Big Bang ? On sait depuis la découverte de l'expansion de l'Univers que des régions du cosmos aujourd'hui éloignées étaient bien plus proches par le passé.
ThermodynamiqueLa thermodynamique est la branche de la physique qui traite de la dépendance des propriétés physiques des corps à la température, des phénomènes où interviennent des échanges thermiques, et des transformations de l'énergie entre différentes formes. La thermodynamique peut être abordée selon deux approches différentes et complémentaires : phénoménologique et statistique. La thermodynamique phénoménologique ou classique a été l'objet de nombreuses avancées dès le .
Trou noir binairevignette|Vue d'artiste de deux trous noirs en train de fusionner. Un trou noir binaire est un système binaire hypothétique composé de deux trous noirs en orbite l'un autour de l'autre. Ils sont l'une des plus grandes sources d'ondes gravitationnelles de l'univers observable. Ce système binaire serait instable en raison d'une certaine perte de moment cinétique avec le temps. Conséquemment, les trous noirs se rapprochent l'un de l'autre jusqu'à ce qu'ils fusionnent, ce qui crée des changements de caractéristiques qui entraînent certains changements structurels au sein d'une hypothétique galaxie hôte.
Premier principe de la thermodynamiqueSelon le premier principe de la thermodynamique, lors de toute transformation, il y a conservation de l'énergie. Dans le cas des systèmes thermodynamiques fermés, il s'énonce de la manière suivante : Au cours d'une transformation quelconque d'un système fermé, la variation de son énergie est égale à la quantité d'énergie échangée avec le milieu extérieur, par transfert thermique (chaleur) et transfert mécanique (travail).
Gravité quantiqueLa gravité quantique est une branche de la physique théorique tentant d'unifier la mécanique quantique et la relativité générale. Une telle théorie permettrait notamment de comprendre les phénomènes impliquant de grandes quantités de matière ou d'énergie sur de petites dimensions spatiales, tels que les trous noirs ou l'origine de l'Univers. L'approche générale utilisée pour obtenir une théorie de la gravité quantique est, présumant que la théorie sous-jacente doit être simple et élégante, d'examiner les symétries et indices permettant de combiner mécanique quantique et la relativité générale en une théorie globale unifiée.