Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The Rayleigh equation 3/2 (R) over dot + R(R) double over dot + p rho(-1) = 0 with initial conditions R(0) = R-0, (R) over dot(0) = 0 models the collapse of an empty spherical bubble of radius R(T) in an ideal, infinite liquid with far-field pressure p and density rho. The solution for r equivalent to R/R-0 as a function of time t equivalent to T/T-c, where R(T-c) equivalent to 0, is independent of R-0, p, and rho. While no closed-form expression for r(t) is known, we find that r(0)(t) = (1 - t(2))(2/5) approximates r(t) with an error below 1%. A systematic development in orders of t(2) further yields the 0.001% approximation r(*)(t) = r(0)(t)[1 - a(1) Li-2.21(t(2))], where a(1) approximate to -0.018 320 99 is a constant and Li is the polylogarithm. The usefulness of these approximations is demonstrated by comparison to high-precision cavitation data obtained in microgravity.
Jean-François Molinari, Antonio Joaquin Garcia Suarez, Tobias Brink