AnisotropieLanisotropie (contraire d'isotropie) est la propriété d'être dépendant de la direction. Quelque chose d'anisotrope pourra présenter différentes caractéristiques selon son orientation. Un exemple simple est celui des lunettes de soleil polarisantes qui ne laissent pas passer la lumière selon la direction dans laquelle on les regarde. Ceci est aussi visible sur certains écrans d'ordinateurs plats qui n'affichent pas les mêmes couleurs : on dit que leur rayonnement est anisotrope.
PolaritonLes polaritons sont des quasiparticules issues du couplage fort entre une onde lumineuse et une onde de polarisation électrique. Plusieurs cas de figure sont possibles : L'onde de polarisation est un phonon optique, c’est-à-dire essentiellement l'oscillation mécanique de deux atomes de charge opposée à l'intérieur d'un cristal. Les polaritons phononiques ont été beaucoup étudiés par la spectroscopie Raman dans les années 1970 - 80 et ont permis de mesurer la constante diélectrique à haute fréquence dans les semiconducteurs.
Aberration (optique)Une aberration est un défaut du système optique qui se répercute sur la qualité de l'image (flou, irisation ou déformation). Les aberrations sont définies par rapport à l'optique paraxiale et matérialisent le fait que certains rayons ne convergent pas vers l'image prédite par l'optique géométrique. Ainsi, la théorie des aberrations s'inscrit dans le cadre de l'optique géométrique et ne prend pas en compte les aspects ondulatoire ou corpusculaire de la lumière. Il est possible de classer les aberrations en deux groupes.
Méthode quantique semi-empiriqueLes méthodes semi-empiriques sont des techniques de résolution de l'équation de Schrödinger de systèmes à plusieurs électrons. Contrairement aux méthodes ab initio, les méthodes semi-empiriques utilisent des données ajustées sur des résultats expérimentaux afin de simplifier les calculs. La longueur et la difficulté des calculs est en grande partie due aux intégrales biélectroniques qui apparaissent au cours du processus de résolution.
Polarisation (optique)La polarisation est une propriété qu'ont les ondes vectorielles (ondes qui peuvent osciller selon plus d'une orientation) de présenter une répartition privilégiée de l'orientation des vibrations qui les composent. Les ondes électromagnétiques, telles que la lumière, ou les ondes gravitationnelles ont ainsi des propriétés de polarisation. Les ondes mécaniques transverses dans les solides peuvent aussi être polarisées. Cependant, les ondes longitudinales (telles que les ondes sonores) ne sont pas concernées.
Décalage vers le rougeLe décalage vers le rouge (en en anglais) est un phénomène astronomique de décalage vers les grandes longueurs d'onde des raies spectrales et de l'ensemble du spectre — ce qui se traduit par un décalage vers le rouge pour le spectre visible — observé parmi les objets astronomiques lointains. À la suite des travaux de Lemaître et Hubble c'est un phénomène bien documenté, considéré comme la preuve initiale de l'expansion de l'Univers et du modèle cosmologique avec le Big Bang.
Pince optiqueLa pince optique est un outil optique introduit en 1987 et utilisé en laboratoire qui permet le piégeage et la manipulation de cibles telles que les cellules, organites ou particules. Elle utilise la force résultant de la réfraction d’un faisceau laser en milieu transparent, pour maintenir et déplacer physiquement des objets diélectriques microscopiques. Des pinces optiques multiples peuvent même être utilisées pour manipuler simultanément plusieurs cibles.
Modèle de DebyeEn physique statistique et en physique du solide, le modèle de Debye est une explication, développée par Peter Debye en 1912, du comportement de la capacité thermique des solides en fonction de la température. Il consiste à étudier les vibrations du réseau d'atomes formant le solide, autrement dit, les phonons. Ce modèle permet d'expliquer précisément les relevés expérimentaux, alors que le modèle d'Einstein, fondé sur la notion d'oscillateur harmonique quantique, présentait une légère différence.
Chimie numériqueLa chimie numérique ou chimie informatique, parfois aussi chimie computationnelle, est une branche de la chimie et de la physico-chimie qui utilise les lois de la chimie théorique exploitées dans des programmes informatiques spécifiques afin de calculer structures et propriétés d'objets chimiques tels que les molécules, les solides, les agrégats atomiques (ou clusters), les surfaces, etc., en appliquant autant que possible ces programmes à des problèmes chimiques réels.
SupraconductivitéLa supraconductivité, ou supraconduction, est un phénomène physique caractérisé par l'absence de résistance électrique et l'expulsion du champ magnétique — l'effet Meissner — à l'intérieur de certains matériaux dits supraconducteurs. La supraconductivité découverte historiquement en premier, et que l'on nomme communément supraconductivité conventionnelle, se manifeste à des températures très basses, proches du zéro absolu (). La supraconductivité permet notamment de transporter de l'électricité sans perte d'énergie.