Annihilating filter-based decoding in the compressed sensing framework - art. no. 670121
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
With the flood of information available today the question how to deal with high dimensional data/signals, which are cumbersome to handle, to calculate with and to store, is highly important. One approach to reducing this flood is to find sparse signal rep ...
Approximating a signal or an image with a sparse linear expansion from an over-complete dictionary of atoms is an extremely useful tool to solve many signal processing problems. Finding the sparsest approximation of a signal from an arbitrary dictionary is ...
This paper introduces an algorithm for sparse approximation in redundant dictionaries, called the M-Term Pursuit (MTP), based on the matching pursuit approach (MP). This algorithm decomposes the signal into a linear combination of selected atoms, chosen to ...
Typical tasks in signal processing may be done in simpler ways or more efficiently if the signals to analyze are represented in a proper way. This thesis deals with some algorithmic problems related to signal approximation, more precisely, in the novel fie ...
Compressive Sensing (CS) combines sampling and compression into a single sub-Nyquist linear measurement process for sparse and compressible signals. In this paper, we extend the theory of CS to include signals that are concisely represented in terms of a g ...
We introduce a new signal model, called (K,C)-sparse, to capture K-sparse signals in N dimensions whose nonzero coefficients are contained within at most C clusters, with C < K < N. In contrast to the existing work in the sparse approximation and compress ...
This paper studies the stability of some reconstruction algorithms for compressed sensing in terms of the bit precision. Considering the fact that practical digital systems deal with discretized signals, we motivate the importance of the total number of ac ...
The theory of Compressive Sensing (CS) exploits a well-known concept used in signal compression – sparsity – to design new, efficient techniques for signal acquisition. CS theory states that for a length-N signal x with sparsity level K, M = O(K log(N/K)) ...
Consider a scenario where a distributed signal is sparse and is acquired by various sensors that see different versions. Thus, we have a set of sparse signals with both some common parts, and some variations. The question is how to acquire such signals and ...
It is well known that the support of a sparse signal can be recovered from a small number of random projections. However, in the presence of noise all known sufficient conditions require that the per-sample signal-to-noise ratio (SNR) grows without bound w ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2008