Symétrie (transformation géométrique)Une symétrie géométrique est une transformation géométrique involutive qui conserve le parallélisme. Parmi les symétries courantes, on peut citer la réflexion et la symétrie centrale. Une symétrie géométrique est un cas particulier de symétrie. Il existe plusieurs sortes de symétries dans le plan ou dans l’espace. Remarque : Le terme de symétrie possède aussi un autre sens en mathématiques. Dans l'expression groupe de symétrie, une symétrie désigne une isométrie quelconque.
Spectre électromagnétiquevignette|redresse=1.5|Diagramme montrant le spectre électromagnétique dans lequel se distinguent plusieurs domaines spectraux en fonction des longueurs d'onde (avec des exemples de tailles), les fréquences correspondantes, et les températures du corps noir dont l'émission est maximum à ces longueurs d'onde. Le spectre électromagnétique est le classement des rayonnements électromagnétiques par fréquence et longueur d'onde dans le vide ou énergie photonique. Le spectre électromagnétique s'étend sans rupture de zéro à l'infini.
Continuous symmetryIn mathematics, continuous symmetry is an intuitive idea corresponding to the concept of viewing some symmetries as motions, as opposed to discrete symmetry, e.g. reflection symmetry, which is invariant under a kind of flip from one state to another. However, a discrete symmetry can always be reinterpreted as a subset of some higher-dimensional continuous symmetry, e.g. reflection of a 2 dimensional object in 3 dimensional space can be achieved by continuously rotating that object 180 degrees across a non-parallel plane.
Ordre de symétriethumb|Une sphère colorée permet d'illustrer les 48 domaines fondamentaux de la symétrie octaédrique. L'ordre de symétrie d'un objet est le nombre d'arrangements distincts pour lequel l'objet en question est globalement invariant. En d'autres termes, il s'agit de l'ordre de son groupe de symétrie. L'objet en question peut être une molécule, un réseau cristallin, un pavage et de manière plus générale, tout objet mathématique en N-dimensions. Théorie des groupes, une branche des mathématiques qui traite des pr
SpectrumA spectrum (: spectra or spectrums) is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors in visible light after passing through a prism. As scientific understanding of light advanced, it came to apply to the entire electromagnetic spectrum. It thereby became a mapping of a range of magnitudes (wavelengths) to a range of qualities, which are the perceived "colors of the rainbow" and other properties which correspond to wavelengths that lie outside of the visible light spectrum.