Détecteur de particulesvignette|Photographie de rayonnements α détectés dans une chambre à brouillard. Un détecteur de particules est un appareil qui permet de détecter le passage d'une particule et, généralement, d'en déduire différentes caractéristiques (en fonction du type de détecteur) telles que sa masse, son énergie, son impulsion, son spin, ou encore sa charge électrique. Cavité de Faraday Chambre à brouillard Chambre à bulles Chambre à dérive Chambre à étincelles Chambre à fils Chambre d'ionisation Chambre à plaques paral
Fraction continue généraliséeEn mathématiques, une fraction continue généralisée est une expression de la forme : comportant un nombre fini ou infini d'étages. C'est donc une généralisation des fractions continues simples puisque dans ces dernières, tous les a sont égaux à 1. Une fraction continue généralisée est une généralisation des fractions continues où les numérateurs et dénominateurs partiels peuvent être des complexes quelconques : où an (n > 0) sont les numérateurs partiels et les bn les dénominateurs partiels.
ATLAS (détecteur)thumb|Le détecteur ATLAS vers la fin février 2006 ATLAS (acronyme de A Toroidal LHC ApparatuS : - dispositif instrumental toroïdal pour le LHC - qui utilise un électro-aimant toroïdal où le champ magnétique se referme sur lui-même dans l'air, sans l'aide d'un retour de fer) est l'une des du collisionneur LHC au CERN. Il s'agit d'un détecteur de particules semblable à CMS, mais de plus grande taille et de conception différente. Il a pour tâche de détecter le boson de Higgs, des particules supersymétriques (SUSY).
Fraction continue de GaussEn analyse complexe, une fraction continue de Gauss est un cas particulier de fraction continue dérivé des fonctions hypergéométriques. Ce fut l'un des premiers exemples de fractions continues analytiques. Elles permettent de représenter des fonctions élémentaires importantes, ainsi que des fonctions spéciales transcendantes plus compliquées. Lambert a publié quelques exemples de fractions continues généralisées de cette forme en 1768, démontrant entre autres l'irrationalité de π ( § « Applications à F » ci-dessous).
Système d'unitésUn système d'unités est un ensemble d'unités de mesure couramment employées dans des domaines d'activité humaine, présentant des caractères de cohérence qui en facilitent l'usage entre les organisations d'une société humaine. Historiquement, les systèmes d'unités ont été d'une grande importance, soumis à réglementation et définis dans des domaines scientifiques et commerciaux. Depuis que les civilisations se sont développées, les hommes ont cherché à développer des systèmes d'unités cohérents, afin de faciliter les échanges, tant scientifiques, que culturels, économiques, et financiers.