Analyse spatialevignette|200px|Carte de cas de choléra pendant l'épidémie de 1854 à Londres L'analyse spatiale est une approche géographique qui étudie les localisations et les interactions spatiales en tant que composantes actives des fonctionnements sociétaux. Elle part du postulat selon lequel l'espace est acteur organisé. C'est une science nomothétique donc elle vise à proposer une approche modélisée de l'espace géographique en mettant en évidence des formes récurrentes d'organisation spatiales et des théories, notamment à travers diverses notions-clés : distance, réseaux, structure, .
Microscopie par excitation à deux photonsvignette|350px|Microscopie par excitation à 2 photons de l'intestin d'une souris. Rouge: actine. Vert: noyaux des cellules. Bleu: mucus des cellules caliciformes. Obtenu à 780 nm avec un laser Ti-sapph. La microscopie par excitation à deux photons (M2P, TPEF ou 2PEF en anglais, aussi appelée « microscopie 2 photons ») est une technique d'imagerie optique combinant les principes de microscopie à fluorescence et de l'absorption à deux photons, faisant partie de la famille des microscopies multiphotons.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Central momentIn probability theory and statistics, a central moment is a moment of a probability distribution of a random variable about the random variable's mean; that is, it is the expected value of a specified integer power of the deviation of the random variable from the mean. The various moments form one set of values by which the properties of a probability distribution can be usefully characterized.
Base de données spatialesUne base de données spatiales est une base de données optimisée pour stocker et interroger des données reliées à des objets référencés géographiquement, y compris des points, les lignes et des polygones. Alors que les bases de données classiques peuvent comprendre différents types de données numériques et caractères, des fonctions additionnelles ont besoin d'être ajoutées pour traiter les types de données spatiales. Celles-ci sont typiquement appelées géométrie ou caractère.
Image resolutionImage resolution is the level of detail an holds. The term applies to digital images, film images, and other types of images. "Higher resolution" means more image detail. Image resolution can be measured in various ways. Resolution quantifies how close lines can be to each other and still be visibly resolved. Resolution units can be tied to physical sizes (e.g. lines per mm, lines per inch), to the overall size of a picture (lines per picture height, also known simply as lines, TV lines, or TVL), or to angular subtense.
Pouvoir de résolutionLe pouvoir de résolution, ou pouvoir de séparation, pouvoir séparateur, résolution spatiale, résolution angulaire, exprime la capacité d'un système optique de mesure ou d'observation – les microscopes, les télescopes ou l'œil, mais aussi certains détecteurs, particulièrement ceux utilisés en – à distinguer les détails. Il peut être caractérisé par l'angle ou la distance minimal(e) qui doit séparer deux points contigus pour qu'ils soient correctement discernés.
Théorie de l'informationLa théorie de l'information, sans précision, est le nom usuel désignant la théorie de l'information de Shannon, qui est une théorie utilisant les probabilités pour quantifier le contenu moyen en information d'un ensemble de messages, dont le codage informatique satisfait une distribution statistique que l'on pense connaître. Ce domaine trouve son origine scientifique avec Claude Shannon qui en est le père fondateur avec son article A Mathematical Theory of Communication publié en 1948.
Information mutuelleDans la théorie des probabilités et la théorie de l'information, l'information mutuelle de deux variables aléatoires est une quantité mesurant la dépendance statistique de ces variables. Elle se mesure souvent en bit. L'information mutuelle d'un couple de variables représente leur degré de dépendance au sens probabiliste. Ce concept de dépendance logique ne doit pas être confondu avec celui de causalité physique, bien qu'en pratique l'un implique souvent l'autre.
Information de FisherEn statistique, l'information de Fisher quantifie l'information relative à un paramètre contenue dans une distribution. Elle est définie comme l'espérance de l'information observée, ou encore comme la variance de la fonction de score. Dans le cas multi-paramétrique, on parle de matrice d'information de Fisher. Elle a été introduite par R.A. Fisher. Soit f(x ; θ) la distribution de vraisemblance d'une variable aléatoire X (qui peut être multidimensionnelle), paramétrée par θ.