Statistical parameterIn statistics, as opposed to its general use in mathematics, a parameter is any measured quantity of a statistical population that summarises or describes an aspect of the population, such as a mean or a standard deviation. If a population exactly follows a known and defined distribution, for example the normal distribution, then a small set of parameters can be measured which completely describes the population, and can be considered to define a probability distribution for the purposes of extracting samples from this population.
Error exponentIn information theory, the error exponent of a channel code or source code over the block length of the code is the rate at which the error probability decays exponentially with the block length of the code. Formally, it is defined as the limiting ratio of the negative logarithm of the error probability to the block length of the code for large block lengths. For example, if the probability of error of a decoder drops as , where is the block length, the error exponent is . In this example, approaches for large .
Code de répétitionLe code de répétition est une solution simple pour se prémunir des erreurs de communication dues au bruit dans un canal binaire symétrique. C'est une technique de codage de canal, c'est-à-dire un code correcteur. Il s'agit d'envoyer plusieurs copies de chaque bit à être transmis. Autrement dit, ce code de répétition encode la transmission des bits ainsi (sur trois bits) : La première chaîne de caractères est appelée le 0 logique et la deuxième, le 1 logique puisqu'elles jouent le rôle de 0 et 1 respectivement.
Méthode de décodageEn théorie des codes, il existe plusieurs méthodes standards pour décoder des mots de code transmis sur un canal de communication avec bruit. Ce sont donc des techniques qui servent à effectuer l'opération inverse du codage de canal. Le décodage par vote majoritaire. Le décodage par observateur idéal. Le décodage par probabilité maximale. Le décodage par distance minimale. Le décodage par syndrome est une méthode de décodage très efficace pour un code linéaire sur un canal de communication avec bruit.
Concatenated error correction codeIn coding theory, concatenated codes form a class of error-correcting codes that are derived by combining an inner code and an outer code. They were conceived in 1966 by Dave Forney as a solution to the problem of finding a code that has both exponentially decreasing error probability with increasing block length and polynomial-time decoding complexity. Concatenated codes became widely used in space communications in the 1970s.
Inégalité de ChernoffEn théorie des probabilités, l'inégalité de Chernoff permet de majorer la queue d'une loi de probabilité, c'est-à-dire qu'elle donne une valeur maximale de la probabilité qu'une variable aléatoire dépasse une valeur fixée. On parle également de borne de Chernoff. Elle est nommée ainsi en l'honneur du mathématicien Herman Chernoff. Elle est comparable à l'inégalité de Markov mais donne une borne exponentielle. Il existe de nombreux énoncés, et de nombreux cas particuliers.
Paramètre d'échellevignette|Animation de la fonction de densité d'une loi normale (forme de cloche). L'écart-type est un paramètre d'échelle. En l'augmentant, on étale la distribution. En le diminuant, on la concentre. En théorie des probabilités et en statistiques, un paramètre d'échelle est un paramètre qui régit l'aplatissement d'une famille paramétrique de lois de probabilités. Il s'agit principalement d'un facteur multiplicatif. Si une famille de densités de probabilité, dépendant du paramètre θ est de la forme où f est une densité, alors θ est bien un paramètre d'échelle.
Capacité d'un canalLa capacité d'un canal, en génie électrique, en informatique et en théorie de l'information, est la limite supérieure étroite du débit auquel l'information peut être transmise de manière fiable sur un canal de communication. Suivant les termes du théorème de codage du canal bruyant, la capacité d'un canal donné est le débit d'information le plus élevé (en unités d'information par unité de temps) qui peut être atteint avec une probabilité d'erreur arbitrairement faible. La théorie de l'information, développée par Claude E.
Inégalité de concentrationDans la théorie des probabilités, les inégalités de concentration fournissent des bornes sur la probabilité qu'une variable aléatoire dévie d'une certaine valeur (généralement l'espérance de cette variable aléatoire). Par exemple, la loi des grands nombres établit qu'une moyenne de variables aléatoires i.i.d. est, sous réserve de vérifier certaines conditions, proche de leur espérance commune. Certains résultats récents vont plus loin, en montrant que ce comportement est également vérifié par d'autres fonctions de variables aléatoires indépendantes.
Distance de HellingerEn Théorie des probabilités, pour toutes mesures de probabilités et absolument continues par rapport à une troisième mesure , le carré de la distance de Hellinger entre et est donné par : où et désignent respectivement les dérivées de Radon-Nykodym de et . Cette définition ne dépend pas de , si bien que la distance de Hellinger entre et ne change pas si est remplacée par une autre mesure de probabilité par rapport à laquelle et soient absolument continues.