In probability theory and statistics, a scale parameter is a special kind of numerical parameter of a parametric family of probability distributions. The larger the scale parameter, the more spread out the distribution. If a family of probability distributions is such that there is a parameter s (and other parameters θ) for which the cumulative distribution function satisfies then s is called a scale parameter, since its value determines the "scale" or statistical dispersion of the probability distribution. If s is large, then the distribution will be more spread out; if s is small then it will be more concentrated. If the probability density exists for all values of the complete parameter set, then the density (as a function of the scale parameter only) satisfies where f is the density of a standardized version of the density, i.e. . An estimator of a scale parameter is called an estimator of scale. In the case where a parametrized family has a location parameter, a slightly different definition is often used as follows. If we denote the location parameter by , and the scale parameter by , then we require that where is the cmd for the parametrized family. This modification is necessary in order for the standard deviation of a non-central Gaussian to be a scale parameter, since otherwise the mean would change when we rescale . However, this alternative definition is not consistently used. We can write in terms of , as follows: Because f is a probability density function, it integrates to unity: By the substitution rule of integral calculus, we then have So is also properly normalized. Some families of distributions use a rate parameter (or "inverse scale parameter"), which is simply the reciprocal of the scale parameter. So for example the exponential distribution with scale parameter β and probability density could equivalently be written with rate parameter λ as The uniform distribution can be parameterized with a location parameter of and a scale parameter . The normal distribution has two parameters: a location parameter and a scale parameter .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.